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Abstract—In this paper, a high-level synthesis workflow
for FPGA-accelerated lookahead ray tracing simulation is
proposed to explore the impact of environmental dynamics
on future beam management. Corresponding modules
have been developed to accelerate massive simulations in
lookahead ray tracing: A pipelined structure for com-
puting ray reflection in signal propagation is designed,
which is followed by ray validation implemented by
parallelized modules. The proposed method is validated in
digital twin of a real scene, presenting improved real-time
performance handling dynamic environment with lower
angular error in beam steering, which shows enhanced
capability in environmental awareness for robust beam
management.

Keywords—ray-tracing, FPGA, real-time, environmen-
tal awareness

I. INTRODUCTION

In millimeter wave (mmWave) wireless communi-
cations for Internet of things (IoT) devices, the dy-
namics of user equipment (UEs) and obstacles in the
environment can result in instability or outage of the
directional mmWave links, which is common in logistics
application scenarios for IoT. One example of a relevant
scenario is the obstruction of the link between the base
station (BS) and moving automated guided vehicles
(AGV) by rack shelves as obstacles in a warehouse
environment (see Section IV). This causes problems
with tracking beams and predicting obstacles, which
is a topic that has been extensively discussed in the

literature. In [1–3], the authors presented methodologies
for estimating beam angles of radio frequency (RF)
signals through the Kalman filters, with the objective
of achieving precise beam tracking for UEs. In [4–6],

(a) Timing of environmental awareness

(b) Example scene with UE moving through obstacle

Fig. 1. Example of lookahead ray tracing in indoor scene

the authors proposed to use radar for beam tracking
for human objects in indoor scenarios. Compared to
complex processing in radar and RF signals, the use of
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images to understand the signal propagation in the envi-
ronment is more intuitive, allowing the system to clearly
identify targets and generate adapted beam manage-
ment schemes, indicating the concept of environmental
awareness in this paper. In [7], the authors employed
deep learning networks to process images captured
by cameras with the objective of identifying dynamic
obstacles and UEs. These were then utilized to make
predictions regarding beam blockage, achieving up to
88% accuracy. Similarly, in [8], the authors leveraged
the image data captured by the camera to anticipate
the future movement of obstacles with the assistance
of a deep learning network, thereby enhancing the envi-
ronmental awareness of the target scene. Moreover, the
authors of [9] proposed to correlate the received signal
strength with the obstacle of UEs detected in the image,
which resulted in a better environmental awareness with
an 11.5% improvement in tracking accuracy. Similarly,
[10–12] also discussed the methods of enhancing envi-
ronmental awareness for communication systems using
scene images. While these approaches result in high pre-

Fig. 2. Module architecture of LRT on FPGA
diction accuracy in beam tracking and/or link blockage,
the high training overhead and runtime computational
complexity of the neural networks should be further
optimized for the real-time application targeted in this
paper. In order to improve the real-time performance of
environmental awareness for dynamic scenes, [13, 14]
proposed a real-time simulation of signal propagation
with the help of ray-tracing accelerated by FPGAs,
which is used to obtain the impact of signal propagation
on the current ”snapshot” captured by the environmental
sensors (e.g., LiDAR or depth camera). Nevertheless, as
the environment under study changes over time, a single
”snapshot” is no longer sufficient for robust beam man-
agement. This necessitates that the ray tracing system
explore ”future” impact factors to be integrated into the
present beamforming decisions, thereby ensuring that

the beam tracking scheme adequately matches the time-
varying dynamics of the environment. In this paper,
model predictive control (MPC) concept, which have
gained widespread popularity in the field of robotics,
are integrated with real-time ray-tracing methodologies.
This integration enables the construction of a novel
Lookahead Ray Tracing (LRT) approach, which is pro-
posed in this paper with the objective of enhancing the
robustness of beam management through the exploration
of predictive dynamics in ray tracing. However, the inte-

Fig. 3. High-level synthesis workflow
gration of MPC with environmental awareness presents
challenges in terms of runtime performance, calling for
higher throughput efforts in calculating signal reflection
to serve the bursty and bulky ray tracing requests.
Consequently, this paper presents an enhanced High-
Level Synthesis (HLS) workflow to facilitate the imple-
mentation of LRT on FPGAs that is well-customized
for the target application scene, thus achieving real-
time acceleration of ray tracing by massive simulation
requests. The main contributions of our work are as
follows:
• In the proposed HLS workflow, an improvement of

the module architecture is achieved by pipelining
reflection path derivation to provide high through-
put capacity for the bursty bulky ray tracing simu-
lation requests in runtime, while the acceleration of
ray validation is also realized by hardware modules
to meet the real-time performance;

• A lookahead ray tracing approach is proposed in
this paper to explore the impact of dynamics within
a predefined future time window, which contributes



to appropriate beam steering scheme for better
beam tracking against environmental dynamics;

• This approach provides a potential avenue for en-
hancing the capacity to configure beam manage-
ment in response to scene dynamics, which in
this paper is regarded as an improvement in the
robustness of environmental awareness.

II. LOOKAHEAD RAY-TRACING

Environmental awareness allows the dynamics of the
application scene to be captured by sensors (such as
LiDAR or depth cameras). This provides an efficient

Algorithm 1 Pipelined Reflection Path Derivation
Input: Transmitter and receiver location TX and RX , re-

spectively; Set of reflection planes Ω
Output: Coordinates of reflection point (RP ) on the given

plane Ω
1: tTX ← Ω.A·TX.x+Ω.B·TX.y+Ω.C·TX.z+Ω.D√

Ω.A2+Ω.B2+Ω.C2

2: tRX ← Ω.A·RX.x+Ω.B·RX.y+Ω.C·RX.z+Ω.D√
Ω.A2+Ω.B2+Ω.C2

3: ∆xTX ← Ω.A · tTX ; ∆xRX ← Ω.A · tRX

4: ∆yTX ← Ω.B · tTX ; ∆yRX ← Ω.B · tRX

5: ∆zTX ← Ω.C · tTX ; ∆zRX ← Ω.C · tRX

6: M ← |∆xTX |+|∆yTX |+|∆zTX |
7: N ← |∆xRX |+|∆yRX |+|∆zRX |
8: Lx ← RX.x− TX.x+Ω.A(tRX − tTX)
9: Ly ← RX.y − TX.y +Ω.B(tRX − tTX)

10: Lz ← RX.z − TX.z +Ω.C(tRX − tTX)
11: for Fitting Reflection Point Displacement Iteratively

do
12: ∆xRP ← M

M+N · Lx

13: ∆yRP ← M
M+N · Ly

14: ∆zRP ← M
M+N · Lz

15: end for
16: RP.x← TX.x+∆xTX +∆xRP

17: RP.y ← TX.y +∆yTX +∆yRP

18: RP.z ← TX.z +∆zTX +∆zRP

19: if RP ∈ Ω.boundary then
20: return RP
21: end if

way to derive motion models of dynamic objects in the
scene, which can be used to predict potential locations of
the dynamic objects within the given time window. After
testing potential locations in ray tracing simulation, all
passing reflection paths in signal propagation are col-
lected, which helps to rationally control beam steering
to cover dynamics within the given time window and
improve beam tracking robustness, as shown in Fig. 1.

At time t0, a ”snapshot” of current scene is taken.
Dynamic objects and their motion models are then
detected, which initiates the LRT to simulate the pre-
dicted movement with n time steps in the given time

window tw. Subsequently, the ray tracing results can
be used to manage the beams, configuring the steering
angle and thereby providing reliable beam tracking that
accounts for environmental dynamics. As the tw is
coupled with the sensor’s sampling rate (e.g., 30 ms for
sensor with 30 FPS), extreme cases, such as a sudden
change in the movement trend of the target UE, can
be neglected, given the assumption that the UE cannot
cause significant changes of movement trend in such a
short time.

(a) Three rays are calculated for
validation

(b) Planes and rays intersect in
different orders

Fig. 4. Example of slab-method based ray validation

III. HLS WORKFLOW AND MODULE ARCHITECTURE

The real-time performance of ray tracing is of
paramount importance. However, given that the LRT
proposed in this paper necessitates massive ray tracing
requests, for which the hardware architecture proposed
in [13] and [14] in the form of a matrix of individual
processing elements is no longer adequate, a pipelined
enhancement in reflection path derivation is presented
in this section. The hardware architecture is illustrated
in Fig. 2. The location of the transmitter/base station
(TX/BS) and receiver/user equipment (RX/UE) to be
employed in the ray tracing simulation are obtained by
the environmental sensors.

These values are then used to generate a sequence
of predicted locations according to the current motion
model of RX/UE, which are passed into our proposed
pipelined Ray Processing Unit (RPU) for ray tracing
simulation: After the projection of the TX and RX
on a given plane and the extraction of the essential
parameters for the reflection point fitting (completed in
four stages), the reflection point on the given plane can
be calculated in eight steps. The result is a reflection
point on the given reflection plane that corresponds to a
first-order reflection path, which are then buffered into a
FIFO and forwarded to the Ray Validation Unit (RVU)
for validity checking.



Moreover, an enhanced HLS workflow is designed for
the purpose of systematically configuring the ray tracing
platform implemented on FPGAs, which is intended to
make the platform adapt well to the application scene
and achieve parallel acceleration in ray tracing for the
target scene, as shown in Fig. 3. At the initiation of the
proposed HLS workflow, the target scene is captured
by depth cameras to obtain 3D point cloud data. The
potential reflection planes and obstacles can then be
detected. Subsequent to this initialization, two sub-
workflows are designed to proceed independently: One
addresses the management of signal reflection on the
planes as indicated by sub-workflow A, while the other
handles the issue of obstacles in sub-workflow B.

A. Sub-workflow A: processing reflection planes

Sub-workflow A starts with grouping reflection planes
into clusters. By clustering and aligning all the planes
contributing to signal reflection according to their ori-
entations (normal vectors), the geometric computation
can be constrained to a set of mutually independent
axes, significantly reducing the granularity of parallel
processing elements and their hardware implementations
on FPGAs. Next, the module for reflection path deriva-
tion in ray tracing is generated in pipelined structure, as
shown in Fig. 2 and Algorithm 1.

Algorithm 2 Slab-method based ray validation for sin-
gle obstacle RayV alidation
Input: Ray R (segment) to be validated; Given ob-

stacle B is represented by its AABB as B =
{Ωx0,Ωx1,Ωy0,Ωy1,Ωz0,Ωz1}

Output: Validity V of the given ray
1: RX , RY .RZ ← R projected on X, Y and Z-Axis,

respectively ▷ Calculate the intersection order index
2: σx0 ← Ωx0·D

RX
·R;σx1 ← Ωx1·D

RX
·R

3: σy0 ← Ωy0·D
RY

·R;σy1 ← Ωy1·D
RY

·R
4: σz0 ← Ωz0·D

RZ
·R;σz1 ← Ωz1·D

RZ
·R

5: Xmin ← min(σx0, σx1);Xmax ← max(σx0, σx1)
6: Ymin ← min(σy0, σy1);Ymax ← max(σy0, σy1)
7: Zmin ← min(σz0, σz1);Zmax ← max(σz0, σz1)
8: if (Xmax < Ymin)∨(Xmax < Zmin)∨(Ymax < Xmin)∨

(Ymax < Zmin) ∨ (Zmax < Ymin) ∨ (Zmax < Xmin)
then

9: V ←True ▷ Non-overlap in intersection segments
10: else
11: V ← V False ▷ Overlaps in intersection segments
12: end if
13: return V

The initial stages consist of calculating geometric
parameters for subsequent reflection point (RP) fitting.

This includes point projection onto planes and derivation
of unsigned point distances, which is outlined in [13]
and [14]. Once the essential parameters are extracted
from the projection, the RP fitting on the given plane
Ω can be performed: The relative displacement of the
RP can be calculated along each axis as ∆xRP ,∆yRP

and ∆zRP according to the law of similar triangles. The
overall calculation is achieved in eight pipeline stages,
where the depth of the pipeline directly correlates to the
precision of the geometric calculation. To save the cost

(a) Scene in digital twin (b) Model used in FPGA

Fig. 5. Experiment environment in digital twin and processed by
real-time ray-tracing: moving vehicle imitates dynamics of UE

of DSP and complex logic such as multiplication and
division, functional alternatives such as shift-and-add are
used to complete the fitting process in multiple stages.
Finally, if the coordinates of the reflection point RP
are valid, i.e. inside the bounded plane Ω, the following
modules can take them for further processing. After the

(a) Optimal beam steer-
ing over time

(b) Calculated beam steering angles
to track the target UE

Fig. 6. Beam tracking by LRT and EKF

pipelined RPU has been generated to register-transfer
level (RTL) modules, the sub-workflow A regarding the
processing of reflection planes is finished.

B. Sub-workflow B: processing obstacles

In sub-workflow B, a slab-method-based [15] ray-
box intersection checking is introduced to explore
the hardware implementation for rapid ray valida-
tion. As an example illustrated in Fig. 4, the rays
bounded by the transmitter TX with different receivers
RX0, RX1, RX2 are evaluated for potential conflicts
with the cuboid-shaped obstacle. The obstacle is rep-
resented by its Axis-Aligned Bounding Box (AABB).
The ray from the TX to various RXs can intersect the



planes of AABB in different order, thus revealing the
order of incident and outgoing points along X-, Y- and
Z-axes, which is used to check if the ray ”hits” the box:
The ray is confirmed not to be blocked by the given
box as soon as no overlap of the ray segments bounded
by the incident and outgoing points along each axis is
recognized in the order of intersections, i.e. the ray is
not correlated with the corresponding axis; Otherwise
the ray-box intersection is approved, as illustrated in
Fig. 4.

Therefore, the hardware implementation is accom-
plished using the same mechanism in the Ray Validation
Unit (RVU). As shown in Fig. 2, the RVU is a subsystem
that performs ray-box intersection checking on each
obstacle for the given ray in a parallel processing man-
ner, in which each validation is performed by a single
ray validation element (RVE) regarding each obstacle,
as shown in Algorithm 2. The ray to be validated is

(a) Trajectory 1 (b) Trajectory 2 (c) Trajectory 3

(d) Trajectory 4 (e) Trajectory 5 (f) Trajectory 6

Fig. 7. Performance of EKF and LRT in beam tracking

initially projected on X, Y, and Z-axes, followed by
the intersection order to be confirmed. As illustrated
in Fig. 2, the order of intersection points on the six
specified planes of AABB can be determined using the
method of similar triangles, indicated here as the order
index σx0..σz1. The ray segments bounded by the pair of
parallel planes along each axis can be used to reveal the
overlaps: Overlap detected indicates ray blockage while
non-overlap indicates validity. In the sub-workflow B
the RVEs are first generated based on each obstacle
detected, followed by generating the RVU wrapping all
RVEs to provide parallel validation checking for each
ray on each obstacle in eight cycles.

IV. PERFORMANCE AND EXPERIMENT

This section presents a validation of the proposed
LRT approach for efficient beam management, where
the target scene is represented by the digital twin of a

real warehouse scenario via geometric reconstruction.
This scene is further processed by our proposed HLS
workflow for the implementation on FPGAs, as shown
in Fig. 5 (b) is the simplified model generated for FPGA-
based LRT. An automated guided vehicle (AGV) is
introduced as the target UE to move in the target scene
with a fixed BS, which is controlled on PC via the digital
twin. The validation setup and implementation results
are shown in Table I.

TABLE I
VALIDATION SETUP AND IMPLEMENTATION ON FPGA

Results in 13 Results in 15 This paper
FPGA Chip Intel Cyclone IV E EP4CE115F29C7

Used Resource 4%-43% 13% 7%-33%
Reflect. Order 1-3 1
Clock Freq. 50 MHz 100 MHz

Elapsed Time <1ms <10us
Target Scene Living Room Office Room Warehouse
UE Location Fixed Dynamic

Blockage Dynamic Fixed
PE Structure Matrix Form Pipeline

Ray Validation Fixed geometric relation RVU
HLS Overhead High Low

The FPGA-based ray tracing module is tested with
UE trajectories stimulated by the test bench imple-
mented adjacent to it. The ray tracing results are then
collected and compared with the beam tracking results
of an extended Kalman filter (EKF) in angular error,
which indicates the discrepancy between the computed
value and the theoretical optimal beam steering angle at
each validation time point. As the UE moves, the beam
steering angles change over time, as illustrated in Fig.
6. Six trajectories are tested on the UE, as shown in
Fig. 5, with the location sampled every 0.5 m, which is
the same as the lookahead time window covers for ray
tracing with 10 predictive location points in each.

As the UE enters and exits the shadowing regions
caused by obstacles, the beam steering angle suddenly
changes and switches to 1st-order reflection paths, caus-
ing large error in the EKF beam tracking up to 12
degrees, while the LRT assisted beam management
shows much smaller angular error, with a maximum of
less than three degrees, as shown in Fig. 7 and 8. It
is interesting to note that for trajectory 5, our proposed
LRT shows a significant error compared to the EKF
result. This is due to the quantization error of the FPGA
implementation: As the UE moves away from the BS,
the RP located on the back wall exhibits a negligible
degree of displacement due to the considerable distance
between the BS and the back wall. Consequently, the
optimal steering angles corresponding to each time



point are not clearly distinguishable in the hardware
implementation since the FPGA modules utilize integer
arithmetic instead of floating point arithmetic. However,
this can be solved easily by pre-increasing the geometri-
cal parameters by a certain factor (e.g. 1024 times) in the
HLS workflow to compensate for arithmetic accuracy
of hardware implementation. Moreover, the accuracy of
LRT can be enhanced by making adjustments to the
time window and the number of predictive locations
of the UE within the time window. This is readily
managed in FPGA implementations by means of trade-
offs with timing and on-chip resource utilization, such
as adjusting the depth of the RPU pipeline.

Fig. 8. High-level synthesis workflow

V. CONCLUSION

In this paper, an enhanced HLS workflow is proposed
to facilitate LRT for environmental awareness acceler-
ated by FPGAs. This workflow integrates beam manage-
ment with model predictive control, thereby handling
environmental dynamics for robust beam tracking. To
address the challenges posed by bursty, bulky ray tracing
requests in LRT, a pipelined structure for computing
signal reflection in rays is also proposed, followed by
parallelized ray validation modules to achieve rapid pro-
cessing that supports the real-time beam management.
After validation using the digital twin of a real scene, the
method proposed in this paper is validated to improve
the performance of beam tracking against environmental
dynamics, showing application potentials in efficient
environmental awareness for robust beam management.
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