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Abstract—Adaptive 6G networks are crucial for maintaining
reliable communication in dynamically changing environments.
To this end, accurate propagation models are essential for net-
work adaptation, but developing real-time, high-fidelity models
is a significant challenge. Machine Learning (ML)-based channel
models have gained attention in recent years, yet their limited
generalizability often necessitates extensive retraining to ensure
applicability in unseen environments. In this paper, we propose a
process chain for rapid network adaptation in dynamic environ-
ments. Our fully automated process encompasses network Key
Performance Indicator collection, LiDAR-based environmental
modeling, Transfer Learning (TL)-assisted refinement of the ML-
based IndoorDRaGon propagation model, and network planning.
We demonstrate that Artificial Neural Networks (ANNSs) achieve
comparable accuracy to Random Forest (RF)-based models while
offering significantly faster adaptation to new environments.
Unlike RFs, ANNs do not need to be retrained from scratch
using all the source data, which reduces computational effort
and improves data privacy as only the new data is required.
This enables efficient and dynamic network reconfiguration in
previously unseen scenarios with just a few new measurements.

I. INTRODUCTION

5G and future 6G network infrastructures are critical for
enabling seamless operations and efficient communication in
complex industrial and logistics environments. These net-
works need to provide the high-speed, low-latency, and ultra-
reliable connectivity required for real-time operations and the
increasing number of connected industrial devices. However,
such environments are highly dynamic - moving machinery,
reconfigured layouts, and fluctuating inventory levels contin-
uously alter radio propagation characteristics. As a result,
areas with previously strong network coverage may experience
degraded connectivity, requiring continuous network recon-
figuration to maintain optimal performance. To address these
challenges, network planning and channel modeling must be
highly adaptive and scalable, capable of responding rapidly
to environmental changes. Existing approaches either lack the
necessary precision or are too computationally intensive for
real-time application. Machine Learning (ML)-driven methods
have emerged as a promising solution, enabling rapid and
accurate modeling.

Fig. 1 illustrates an intralogistics use case where rapid
environmental changes contrast with a static communication
network. In this paper, we present a methodology for rapidly
and accurately adapting the network to new situations in
unknown and dynamic environments. Our approach builds
upon our previously presented ML-driven indoor propagation
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Fig. 1. Dynamic environments place high demands on local wireless
networks, requiring adaptive reconfiguration to maintain performance, as static
networks fail to respond effectively to changing conditions

model, IndoorDRaGon [1], for optimizing Base Station (BS)
positions and rapid ML model adaptation by leveraging fine-
tuning, a Transfer Learning (TL) approach.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, the proposed approach
for network optimization and rapid model adaptation is pre-
sented in Sec. III. Methodological aspects are outlined in
Sec. IV, and followed by detailed results in Sec. V.

II. RELATED WORK

A wide range of channel models is available, partly designed
especially for indoor scenarios. Empirical models, such as
those presented by 3GPP in [2], are often used because of
their ease of implementation and computational efficiency.
However, in many cases, these models do not perform well
in unknown, novel scenarios. Ray tracing methods [3] can
provide a remedy, but their prediction accuracy is highly
dependent on the level of detail of the environmental model,
which is typically absent for indoor scenarios. In addition,
ray tracing computations are time-consuming and require high
computing resources [4].

Several ML-based channel models have been published
in recent years, often outperforming empirical models in
accuracy [5]. [6] provides a comprehensive review of ML
techniques for radio wave propagation modeling, outlining
key challenges and examining indoor and outdoor models
from the literature. Most ML-based indoor propagation models
are trained and tested within the same environment, leaving
their generalizability to unseen scenarios largely unexamined.
Designing a model that performs well across indoor envi-
ronments remains a significant challenge. Additionally, most
ML-driven channel models rely on offline training, requiring
full retraining when new data becomes available. A further
challenge is the availability of sufficient measurement data.
In [7], this issue is addressed by using a small amount of
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Fig. 2.

measurement data to calibrate ray tracing software, which is
then utilized to generate synthetic data. Other approaches, such
as [8], rely solely on uncalibrated synthetic data, potentially
limiting model accuracy in real-world applications.

TL has emerged as a promising solution to this challenge,
offering reduced computation time and energy consumption.
In [9], TL is applied to adapt an outdoor channel prediction
Convolutional Neural Network (CNN) to a new environment.
TL has also been used for indoor radio map estimation, as
carried out in [10], where modified environments are generated
by changing the object’s position. [11] addresses the challenge
of sparse measurements by initially training a CNN-based
indoor propagation model on synthetic data and later refining
it with a small set of measurements to reduce ray tracing-
induced approximation errors. The authors in [12] utilize TL
to adapt their pretrained CNN model to new frequencies.
Online training is another way to adapt models when little
new data is available. This enables incremental updates as
new data becomes available, which allows for a rapid adap-
tation to changing channel conditions. In [13], online training
is applied for channel estimation in Orthogonal Frequency-
Division Multiplexing (OFDM) systems, while [14] presents
a framework for real-time propagation environment modeling
and signal strength prediction.

III. PROPOSED INDOOR NETWORK OPTIMIZATION

Problem Statement: We want to design a process chain in
which the BS location is optimized for an unknown obstacle
constellation but known hall environment. Fig. 2 shows the
overall system architecture of the proposed network optimiza-
tion approach, which consists of mainly two parts: accurate
indoor propagation modeling and a network planning stage.
Furthermore, this process chain incorporates the possibility of
rapidly adapting the propagation model as new data emerges,
ensuring continuous optimization in dynamic environments.

Channel Modeling: The propagation modeling, which con-
stitutes the basis for network planning, is conducted utiliz-
ing the IndoorDRaGon method, which we presented in [1].
IndoorDRaGon is a lightweight ML-based path loss predic-
tion method, that uses a Random Forest (RF) for predicting
the path loss given 29 numerical features. Thereby, Indoor-
DRaGon relies on features extracted from two environmental
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images describing the direct path between transmitter and
receiver. Further information is provided in Sec. IV. Since
IndoorDRaGon was trained for a specific indoor environment,
reference measurements of a new environment must first be
taken in order to adapt it to the new environment. For the
subsequent network planning step, it is also essential that
planning is carried out as quickly and resource-efficiently as
possible in order to avoid delays during operation in industrial
applications. However, RFs need to be retrained from scratch
as they do not allow for concepts like TL or online learning.
Hence, we consider an Artificial Neural Network (ANN)-based
IndoorDRaGon variant to allow rapid adaptation to new data.

Transmitter Placement: IndoorDRaGon is used to deter-
mine the coverage map for a possible transmitter position
and configuration. Solely using a scenario map, a transmitter
specification, and a Radio Environmental Map (REM) cell
resolution determining possible receiver positions, the required
features for the ML predictor can be extracted and used for
predictions. In practice, the installation of BSs is not possible
in arbitrary locations. Consequently, the potential transmitter
locations are predefined, resulting in a finite solution space.
Note that while any number of BSs can be considered, the
computational complexity increases linearly with each addi-
tional position.

IV. DATA ACQUISITION, PREPROCESSING, AND USAGE

Data collection: Compared to environment 1 [1], where a
cable robot was utilized in order to collect 3D measurements,
we use an agile ground robot, see Fig. 3a, in this work. It
is based on the DJI Robomaster platform featuring Omni
wheels, allowing the robot to move quickly to any position and
orientation. For reliable localization, we utilized Simultaneous
Localization and Mapping (SLAM) based on Light Detection
and Ranging (LiDAR) and Inertial Measurement Unit (IMU)
data. All devices are connected to a System-on-a-Chip (SoC)
running ROS2. This device simultaneously orchestrates and
measures 5G connectivity. A 5G modem with four vertically
oriented rod antennas with a peak gain of 2.2 dBi is connected
to the SoC. For consistent signal strength measurements, a
fixed orientation of the antennas is guaranteed by automating
navigation to a grid of predefined measurement points with a
fixed goal orientation using NAV2 [15].
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Fig. 3. Measurement data collection and playground of environment 2

In a first step, the scenario is traversed by teleoperating
the robot to create a scenario obstacle map using SLAM.
Based on the resulting map, the robot can automatically
drive along the scenario grid-wise, thus enabling systematic
surveying of network Key Performance Indicators (KPIs). The
folding displays from [1] are reused as obstacles for collecting
measurements in the new, unknown environment 2. We defined
eight distinct scenarios for training data collection in order
to retrain the IndoorDRaGon model on the new measurement
environment (see Fig. 4 Scenario A-H). Thereby, the scenarios
are designed as distinct as possible. The environment is limited
to a fixed playground with a size of roughly 8.5 x 7.0 m. For
each training scenario, we performed the measuring process
for seven BS positions (cf. Fig. 4 Scenario A): At each of the
four corners of the playground and in the middle of the sides
of the playground, with the exception of the left-hand side. An
image of Scenario F is shown in Fig. 3b with the BS located at
position 7. The BS is always oriented towards the playground,
mounted at a height of 1.84 m, using a center frequency of
3725 MHz, 50 MHz of bandwidth, 30 kHz subcarrier spacing,
TDD pattern 5:5, and 0 dBm transmission power.

In total, 100K measurement points are collected. Fig. 5
shows the measured Reference Signal Received Power (RSRP)
in the empty hall scenario conducted in [1] and the new data
recorded in this work. As becomes evident, the trend the
data follows differs between the two hall environments. While
the data conducted in this work is relatively similar to the
freespace path loss, the original IndoorDRaGon data follows
a significantly flatter trend for larger propagation distances.

Data preprocessing: In comparison to [1], where a complex

digital twin of the environment was used to render sectional
images of the scenario, the top and side view images are
generated geometrically here without graphical interface al-
lowing for a more ressource efficient feature extraction. This
enables the circumvention of a complex digital twin, with the
environment model instead being generated from the SLAM
map. While the top view images can be created from the
determined obstacle map by selecting the image section based
on the position of the transmitter and receiver analogous to
[1], the positions of the obstacles must be determined for the
generation of the side view images. To distinguish between
dynamically changing objects and fixed environmental com-
ponents, the static environment is surveyed in a first step so
that the non-static objects can be detected by superimposing
newly recorded scenarios with the reference map (cf. Fig. 2).
The objects can subsequently be extracted by edge detection
and assigned a height. With known transmitter and receiver
positions (localization via SLAM), side view images and
intersections with obstacles can be computed. Similar to [1]
the amount of black pixels for three horizontal and five vertical
split sections are extracted for both synthetic image types.
The considered feature domains and explicit 27 features are
listed in Tab. I. Compared to [1], three communication-aware
features are removed because they do not change between
scenarios, while the distance to the first intersection is added.

TABLE I
LOGICAL SUBVECTORS OF UTILIZED ML FEATURE VECTOR.
Subvector  Features
Xcom Estimated path loss L
< Position differences Az, Ay, Az, deviation from main
pos antenna beam Av, A¢p, 3D distance dsp, receiver height z
Relation of obstacle pixels for three horizontal and five
Ximg vertical split sections for top-view (xtop) and side-view
(Xsige) images
x oLOS distance dopos, number of intersections Nig,
cnv

distance to first intersection dig

Transfer Learning: In [1], the IndoorDRaGon model is
trained once on the training data. However, as soon as new
measurement data becomes available, it is beneficial to utilize
it for the ML model, thereby enhancing its generalization. As
ANNSs allow for iterative learning, we employ fine-tuning, a
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Fig. 4. LiDAR scans of the measurement scenarios in environment 2 from top-view perspective
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TL type, to efficiently adapt an already trained model to new,
unseen scenarios. This is achieved by training the ANN for
additional epochs leveraging the new data.

Network Planning: To realize network optimization for a
new environment, a map of the modified scenario and a defined
BS solution space are required. Consequently, IndoorDRaGon
is used to generate a REM for each BS position of interest
(cf. Fig. 2). From the resulting solution space, the best BS is
selected by maximizing the mean received power FPrx.

V. EVALUATION, EXPLOITATION, AND OPTIMIZATION OF
ML-BASED PROPAGATION MODELING

A. Adaptation to New Hall Environment

As already pointed out, the propagation characteristics of the
hall environment in [1] differ from the one in this work. It can
be inferred that the model trained in [1] lacks transferability
to the new environment. In order to verify this hypothesis,
the ML model is trained and tested on different combinations
of data: original data only, new data only, and both data
combined. The performance of the model on the corresponding
hold-out test data is illustrated in Fig. 6. Notably, the transfer-
ability is not given for both directions, resulting in more than
doubled Root Mean Squared Error (RMSE) values. However,
training the RF on the aggregated data leads to enhanced
generalization, with equally good performance as achieved by
the locally trained models.

B. Assessment of Transferability to ANN

To allow for TL, we trained an ANN on the same training
data compilations. This approach necessitated the preliminary
process of hyperparameter tuning. We performed a bayesian
optimization regarding the batch size, learning rate, weight
decay factor, number of hidden layers, and the depth of the
first hidden layer with roughly 100 configurations tested. Each
hidden layer consists of a linear layer, an activation function,
and batch normalization. The second and third hidden layer
double in size, then each subsequent layer halves. The best
hyperparameter configuration found is provided in Tab. II.

We carried out the same transferability analysis with the
ANN as with the RF. The resulting RMSEs can be seen in
the right part of Fig. 6. Overall, slightly worse RMSEs can be

test data for different training data compositions

observed with an exception when training on the new data and
testing on the original data. The original data covers greater
3D distances between transmitter and receiver than new data
(cf. Fig. 5). While this is not an issue with RFs, as they
lack extrapolation capability, it is with ANNs, where in this
particular case the deviation of y and ¢ increases together
with the distance. However, the global model’s performance is
equally good compared to the RF making the ANN a suitable
ML model alternative.

TABLE 11

CHOSEN HYPERPARAMETERS OF THE ANN.
Hyperparameter Value
Batch size 1024
Learning rate le-4
Weight decay factor  5e-4
Activation function Leaky ReLU
Hidden layer sizes [512, 1024, 2048, 1024, 512, 256, 128, 64, 32]
Optimizer Adam

C. Exploiting the Trained Models for REM Generation

The trained ML models are subsequently used for generat-
ing area-covering REMs. In this process, the feature vector x is
derived for each REM cell (each receiver position of interest)
and used for predicting . REMs for scenario G with BS
position 7 are shown in Fig. 7. While the REM resolution for
the predictions is solely limited by the computing resources,
the resolution for the ground truth REM is constrained by
the feasibility of carrying out high resolution measurements
over a large area and the accuracy of the localisation. For the
measured ground truth a REM cell resolution of 50 cm is used
and for the predicted REM the resolution is set to 2.5 cm.

As already pointed out in the preceding section, both ML
models demonstrate the capacity to accurately replicate the
propagation effects. While a sample-wise comparison of this
scenario produces an RMSE of 1.34 dB for the RF and 1.77 dB
for the ANN, the resulting REMs appear pretty much iden-
tical for both methods with RMSEs of 1.53dB and 1.60dB,
respectively, with only minor differences recognizable. In both
REMs, the impact of obstacle-induced shadowing is distinctly
observable, and a higher RSRP is evident in proximity to the
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Fig. 7. Exemplary REM results: Measured ground truth at 50 cm and ML
predictions for 2.5cm cell resolution for scenario G with BS position 7.
Additionally, the RMSE is shown for four different areas (red dB values).

BS, as is apparent from the measurements. However, the RF-
based prediction exhibits some circular pattern with respect
to the distance to the antenna, suggesting decision nodes
influenced by the 3D distance between the transmitter and
receiver. This behaviour is especially apparent in the vicinity
of obstacles, thereby facilitating a clear differentiation between
Line of Sight (LOS) and Non LOS (NLOS) conditions. Con-
versely, the REM generated by the ANN demonstrates a more
continuous representation with fewer abrupt transitions. While
obstacle-induced shadowing remains clearly identifiable, the
ANN predicts lower RSRP values in the LOS region ahead of
the obstacles compared to the RF model. For a better location-
dependent comparison, we split the scenario into 4 areas: LOS,
NLOS and Transition 1 and 2 (cf. Fig. 7 upper left). While
the RF is moderately more accurate than the ANN for LOS
and transition area 2, the latter produces significantly better
predictions for transition area 1, while the RF is superior for
the NLOS area.

D. Transmitter Placement

To identify the most suitable BS position, REMs are created
for the first unseen scenarios of interest for each of the seven
BS positions (see Fig. 4 scenario A) using the latest ML model.
The ANN-generated REMs can be observed in Fig. 8. The
mean highest RSRP is observed here for BS positions 1, 6,
and 7 with position 6 having the lowest standard deviation. As
expected, BS positions 3 to 5 exhibit the lowest mean RSRP

BS Position 1 BS Position 2 BS Position 3

Fig. 8.
deviation. Identified best BS position is position 6.

BS Position 4

due to the presence of obstacles directly in front of the BS,
leading to significant shadowing effects.

E. ML Model Adaptation Using Transfer Learning

Building on the preceding antenna placement, the network
is subsequently deployed. In a realistic setting, network KPIs
would be collected by communication participants, enabling
further refinement of the propagation model. To simulate this
process, we conducted a measurement run for the deployed
network. Initially, we evaluated how accurately the models
trained on [1] and scenarios A to H could predict the RSRP
for the new, unseen scenarios. While the ML models achieve
low RMSEs of approximately 2dB on the already seen data,
their performance degrades significantly in scenarios I to K,
with RMSE values ranging from 3 to over 4dB (cf. Fig. 10).

To enhance model performance in a new scenario, recently
collected KPI values are leveraged to generate additional
training samples. For further training of the ANN, we apply
a learning rate of le-5 and train for additional 10 epochs. For
proper comparison, both models are trained under identical
hardware conditions, without multithreading or GPU acceler-
ation. The results for scenario I are presented in Fig. 9.

Incorporating scenario I into training significantly reduces
the RMSE for both models. While the RF requires all original
training data (also referred to as source data), the ANN
can adapt incrementally without using the source data and
therefore offering advantages in terms of privacy preservation.
This, however, comes at the expense of worse generalization,
as the ANN exhibits a notably higher RMSE on the original
dataset. Retaining source data for further training mitigates
this issue but increases training time. To analyze this trade-
off, we evaluate different proportions of source data: 100%,
50%, 20%, 10%, 1%, 0%. When incorporating only 10% of the
source data in the TL approach, the ANN exhibits only a slight
increase in RMSE on the source test data while achieving
improved RMSE on scenario I and requiring less training time
than the RF. Enabling GPU acceleration reduces the time from
56 to 3 s. Note that the training duration is strongly correlated
with the number of training samples. With increasing amount
of available data, the training time of the RF grows, whereas
it remains unchanged for the TL approach.

In a realistic setting, the environment is constantly changing
and new network KPIs emerge continously, allowing further
adaptation of the underlying ML model. We simulate this
through the implementation of multiple TL iterations using
the test scenarios I to K: Upon the modification of the
environment, the network planning is initiated, followed by the

BS Position 5 BS Position 7

BS Position 6

RSRP [dBm]

Analysis of different BS locations: ANN-predicted REMs for scenario I and seven pre-selected BSs together with their mean RSRP and standard
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deployment of the network, KPI collection, and the utilization
of the KPIs for adapting IndoorDRaGon’s ANN (cf. Fig. 2).
The results on the test data can be seen in Fig. 10. With
each TL iteration the model’s generalizability is improved with
slighty increased RMSE for the already seen data but substan-
tial improved RMSE for the scenario of interest. Additionally,
it can be discerned that the first TL iteration not only reduces
the test error on scenario I, but also for scenario J.

VI. CONCLUSION AND OUTLOOK

In this paper we presented how the existing ML-based
IndoorDRaGon channel model can be adapted to new envi-
ronments. As demonstrated in our comprehensive performance
evaluation the ML model requires training on data from the
new environment to accurately perform RSRP predictions.
As the RF utilized by the original IndoorDRaGon model [1]
lacks continous training capability, we examined ANNs as ML
replacement. Although the latter demonstrates slightly poorer
accuracy, it achieves notable strengths in the domains of rapid
adaptation to novel scenarios and data privacy.

In this work, a rather simple network planning with only
one BS was performed. Since the optimal solution here can
be found by exhaustive search, we intend to extend the routine
to multiple BSs and apply k-means clustering as used in [16]
in future work. To enhance the generalizability of the proposed
approach, we plan to include additional industrial hall envi-
ronments in the future and benchmark IndoorDRaGon against
other state-of-the-art ML techniques to thoroughly evaluate its
performance. Another goal is to extend the IndoorDRaGon
method to the mmWave frequency spectrum by applying TL.
Future work will also explore federated learning for indoor
environments to address privacy challenges in model transfer.
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