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Abstract—Future 6G networks are expected to enable a wide
range of industrial applications that demand ultra-high data
rates. To meet these requirements, communication systems will
increasingly rely on millimeter-wave (mmWave) frequencies,
which offer large available bandwidths but exhibit complex and
sensitive propagation behavior. Accurate network planning for
such environments requires reliable Radio Environmental Maps
(REMs), which in turn depend on precise channel modeling.
Machine learning (ML) has shown promise in bridging the gap
between computation time and prediction accuracy left by tradi-
tional modeling methods, but it has not yet been transferred to
large-scale, complex Indoor Factory (InF) environments. In this
paper, we present an ML-based propagation model for taming
mmWave connectivity prediction in a densely cluttered real-world
industrial scenario. The model utilizes features derived from
privacy-preserving level-of-detail environmental representations,
such as top and side-view image projections. We evaluate two
ML model types – LGBM and ANN – on a dataset collected in
a complex industrial environment. Both models accurately cap-
ture the underlying propagation characteristics and outperform
traditional empirical models by 8.18 dB in prediction RMSE and
by being approximately 30-times faster than ray tracing. We
demonstrate the potential of ML-based models to support fast
and reliable connectivity map generation, making them suitable
for efficient mmWave network planning for industrial scenarios.
Index Terms—Machine Learning, mmWave Communication, Ra-
dio Propagation Modeling, Indoor Factory

I. INTRODUCTION

In modern industrial environments, wireless communication
plays a central role in enabling flexibility, scalability, and
real-time coordination across production and logistics systems.
With the advent of Industry 4.0, a wide range of participants –
including Automated Guided Vehicles (AGVs), mobile robots,
production machines, edge devices, and sensors – require
reliable connectivity to operate efficiently and collaboratively.
To meet these requirements, private 5G networks are increas-
ingly deployed within factories and warehouses, with future
6G expected to further extend capabilities [1–3]. To support
the high data rates demanded by many of these applications,
the broad available bandwidth at millimeter-wave (mmWave)
frequencies is often used - specifically, 5G Frequency Range
2 (FR2) spanning from 24 GHz to 71 GHz [4]. However, at
such high frequencies the propagation characteristics differ
compared to the traditional communications within sub-6 GHz
(i.e., Frequency Range 1 (FR1)). mmWave signals suffer from
higher path loss, limited diffraction, and increased sensitivity
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Fig. 1. From modeling radio propagation using highly detailed environmental
models in controlled environments to accurate mmWave modeling relying on
low-detail representations of complex real-world indoor scenarios

to environmental factors such as heavily material-dependent
object penetration capabilities [5]. As a result, even minor
changes in the environment can lead to considerable variations
in the radio field.

In industrial environments, where dynamic environmental
changes are common, channel modeling must not only be
precise but also computationally efficient to allow for adaptive
network planning to ensure robust and reliable wireless com-
munication, especially in critical applications. This requires
an accurate, up-to-date 3D environmental model. While public
data sources, such as OpenStreetMap are available for creating
3D models of outdoor environments, it is a major challenge
with indoor scenarios, where environmental models typically
need to be created manually and seldom made public for
reasons of strategic privacy. The quality of environmental
indoor models can vary significantly (see Fig. 1): In controlled
laboratory settings, detailed 3D models with accurate geometry
and material properties are more likely to be available. In
contrast, models of real-world industry environments are often
generated from sensor data such as LiDAR scans for preserv-
ing privacy [6], but may contain simplifications (abstraction of
specific object details), modeling errors, and lack information
about material properties [7]. Consequently, accurate channel
modeling must be achieved quickly based on low-detail and
easily obtainable environmental representations.

Machine Learning (ML)-driven propagation models are
well-suited for this task, as they can implicitly learn en-
vironmental characteristics from the training data, allowing
accurate predictions even when using simple environmental
models without explicit material information. Inspired by our
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previously presented ML-driven indoor propagation model,
IndoorDRaGon [8], designed for sub-6 GHz communication,
we present an ML-based mmWave radio propagation model
for complex industry environments in this work. As Indoor-
DRaGon was trained on data from environments with only few
obstacles, the entire feature generation process is redesigned
to address the complexity of real-world industry scenarios.

The remainder of the paper is structured as follows. After
discussing related works on propagation modeling in Sec. II,
Sec. III introduces the new DRaGon 1 approach for for prog-
nosis of mmWave network connectivity. In Sec. IV, detailed
results on the ML regressors are presented and followed up by
a discussion of the impact of extracted features on computation
time and prediction accuracy. Last, we summarize our results
in Sec. V and provide insights into our ongoing research.

II. TOWARD PROPAGATION MODELING FOR THE 6G ERA

A wide range of channel models is available, partly designed
especially for indoor scenarios, but only a few specialize on the
complex propagation characteristics at mmWave frequencies.
The highly dynamic and complex channel conditions push
classic empirical channel models to their limits, especially
because they typically rely on oversimplified assumptions that
do not truly take the environment into account. For example,
3GPP presents a family of empirical channel models for 5G
including mmWave frequencies [9]. They distinguish between
several scenarios based on the environmental setting. For
Indoor Factory (InF) scenarios, the factory halls are further
categorized based on their size and clutter density. How-
ever, these models differentiate only between Line-of-Sight
(LOS) and Non-LOS (NLOS) conditions, without explicitly
considering the environment. ITU provides parameters for
various construction materials, which can be used to derive
corresponding obstacle shadowing effects [10].

Physics-based ray tracing simulations offer a more accu-
rate alternative by explicitly modeling Electromagnetic Waves
(EM) wave interactions with the environment [11]. These sim-
ulations can account for reflections, diffraction, and scattering
based on detailed 3D models. However, the quality of the
predictions is strongly related to the quality of the environment
model [12]. Moreover, the calculations are computationally
expensive, making ray tracing simulations less practical for
large-scale, densely cluttered, or real-time applications.

In other domains, such as sub-6 GHz for outdoor and indoor
cellular communication, ML-based propagation models have
proven themselves, as they can implicitly learn environmental
information, material properties, and propagation behavior
from the measurement data [13]. In many cases, ML methods
have been shown to outperform ray tracing simulations, such
as in [14]. While some works rely on a high number of mea-
surements as provided in [15], others rely solely on synthetic
data [16]. In our previous work we introduced IndoorDRaGon
[8] as an ML-based path loss prediction method for sub-

1The acronym DRaGon originates from our initial ML-enabled channel
prediction method, Deep RAdio channel modeling from GeOinformatioN, but
today refers generally to our ML-enabled channel prediction methods.

6 GHz in a lab like environment with commercial-of-the-
shelf 5G equipment given a precise environment model (cf.
Sec. III-B). The authors in [17], apply various lightweight
ML models trained on measurements at 28 GHz conducted
in a manufacturing lab by using only a limited number of
features, e.g., the transceiver positions and the number of
obstructions in the direct path based on the floor plan. In
[18], the authors avoid using environmental information by
solely relying on features based on channel state information to
train an Aritifical Neural Network (ANN) with measurements
at 28 GHz in a small-scale indoor corridor environment. The
authors in [19] rely on synthetic data obtained from ray tracing
simulations in industry-inspired pseudo-environments. They
train an ANN for different frequencies, including 28 GHz,
using both channel-related features and features classifying
the environment.

In this work, we now take up the idea of [17] to generate
area-covering data for, compared to [18], large-scale indoor
environments and thus derive an ML method for accurate
Radio Environmental Map (REM) generation similar to our
validated method in [8]. As the authors in [19], we utilize
ANNs trained on a wider range of features than in [17].

III. PROPOSED ML-BASED MMWAVE CHANNEL MODEL
FOR INDUSTRIAL ENVIRONMENTS

Our goal is to retrieve a model to accurately predict the
Received Signal Strength (RSS) given a 3D receiver and
transmitter position and a 3D model of a complex indoor
industrial environment for mmWave frequencies.

A. Complex Industry Scenario under Investigation

In this work, we consider a real-world large-scale produc-
tion scenario from Fraunhofer IPT [20] in Aachen, Germany.
The factory hall has a length of 97.0 m, a width of 28.5 m, and

(a) Virtual 3D representation of the
indoor factory environment

Radio Units

(b) Classic IndoorDRaGon: Top-view
considering clutter over all heights

(c) Top-view slice from 0 m to 1 m (d) Top-view slice from 1 m to 2 m

(e) Top-view slice from 2 m to 3 m (f) Top-view slice from 3 m to 4 m

(g) Top-view slice from 4 m to 5 m (h) Top-view slice from 5 m to 6 m

Fig. 2. Top-view representations of complex industry scenario: As one single
top-view (b) cannot reflect the clutter’s complexity, multiple top-view slices
(c)-(h) are employed



a height of roughly 10 m, resulting in a shop floor area of more
than 2,700 m2. A 3D top-view of the environment can be seen
in Fig. 2a. The environment contains more than 50 machine
tools and workspaces used across various stages of production.
These elements, along with their surrounding structures, are
largely composed of metallic materials, which significantly
attenuate or block the penetration of electromagnetic waves.
In previous works, we investigated the mmWave coverage at
Fraunhofer IPT by collecting measurements for a single cell
[21] and for two cells [1]. According to the 3GPP definition,
the scenario corresponds to InF DH (dense clutter, high Radio
Unit (RU)) with the RUs being mounted at 6 m height.

B. Preliminary Work on Industrial Indoor Channel Modeling

As mentioned in Sec. II, we introduced IndoorDRaGon in
our previous work [8] as an ML-based path loss prediction
method. Given an environmental model of the indoor sce-
nario, a transmitter configuration, and receiver position, two
synthetic black-white images of the propagation environment
are generated. One showing the Direct Path (DP)’s side-
view and one showing the corresponding top-view. Based on
these images, numerical features are extracted, indicating the
number of obstacle pixels in five vertical and three horizontal
split sections. These image-based features are combined with
additional numerical inputs such as characteristics of the
DP, the relative positions of transmitter and receiver, and
communication parameters to form the feature vector x. This
vector is fed into the already trained Random Forest (RF)
model, which then predicts a correction term to refine an
underlying empirical channel model. In a subsequent study
[22], we replaced the RF model with an ANN, enabling faster
model adaptation through Transfer Learning (TL).

We have shown that IndoorDRaGon can outperform ray
tracing simulations and empirical models. However, it was
trained on sub-6 GHz measurement data and in a less complex,
rather lab-like environment with only a few obstacles and a
detailed environmental model. As demonstrated in [22], fine-
tuning of IndoorDRaGon using TL is a suitable approach to
adapt the IndoorDRaGon model to new scenarios. The authors
in [23] have demonstrated that this procedure can also be used
for rapid adaptation to new frequency ranges. For the particular
use case in this work, a 3D environmental model was created
based on 3D LiDAR points. The model consists of roughly
6,000 polygonal surfaces representing the sides and tops of
obstacles without standardized geometric structure or material
annotations. Due to this increased complexity and reduced mo-
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Fig. 4. Overall architecture of the proposed ML-based channel model

del regularity, the original IndoorDRaGon approach, which re-
lied on simplified cuboid representations for feature extraction,
is no longer directly applicable.

C. Towards mmWave-IndoorDRaGon

We modified the process chain to address the aforemen-
tioned problems. Fig. 4 provides an architectural overview of
the proposed ML-based mmWave channel model for industrial
environments. Based on a 3D model of the environment,
the RU specifications and a 3D receiver position, various
numerical features are extracted. The latter are fed into an ML
regressor that predicts a correction term ∆L used to correct
the analytical Reference Signal Received Power (RSRP) pre-
diction based on an empirical path loss model. More detailed
explanations follow below.
1) Feature Generation Adaptations: Although a side-view
image of the DP (cf. Fig. 3) – capturing object heights – is
generated in [8], the full spatial complexity of the environ-
ment in such densely cluttered scenarios cannot be mapped
sufficiently, leading to significant information loss. To address
the increased scenario’s complexity – particularly the fact that
obstacles do not uniformly start at ground level – we extend the
original image-based representation by using not just a single
black-white top-view image (cf. Fig. 2b), but seven distinct
top-view slices at different heights. Each one shows a 1 m-high
horizontal slice, with the exception of the last one covering the
upper heights from 6 to 10 m. Scenario covering top-views can
be seen in Fig. 2c to h.

Fig. 3 depicts the image feature extraction for one of the
seven top-views and side-view for one transmitter-receiver
pair. The scenario top-views can be generated in advance,
while the DP’s side-view needs to be created ad-hoc. There-
fore, intersections of the DP plane orthogonal to the xy-plane
with the 3D environment model are determined geometrically.
Since identical operations are performed here on many ele-
ments in parallel, we leverage CuPy [24] for GPU-accelerated
computation. Afterwards, the side- and top-views are tailored

Resulting Cut-outs with Gray Filling

RX

TX Direct Path

Scenario Top-View for 0-1m Height

Direct Path Side-View

Image Feature Extraction
(shown here for one example Top-View)

Horizontal 
Split Sections

Vertical 
Split Sections

For each split 
section extract:


Ratio of black pixels 
Ratio of gray pixels

(Aspect Ratio: 4:1)
1.05 x Direct Path Distance

RX TX Direct Path

1.1 x Hall Height

1.1 x Direct Path Distance

Fig. 3. Example image feature extraction for top-view slice 0 m to 1 m and one transmitter-receiver pair



according to a DP bounding box. The latter shows 1.05 · ddp
width and is fixed to a 4 : 1 aspect ratio for top-views and
1.1 · ddp width and 1.1 · hhall height for side-views. As these
bounding boxes might include areas outside of the scenario,
we use a gray color to distinguish between obstacles and the
outside area. Since rotating and cropping images is rather
computationally intensive, we apply CuPy for the tailoring
process. This allows us to extract the ratio of black and gray
pixels easily. As the distances between transmitter and receiver
are comparable large and we lose a lot of detail with only a few
image split sections, we use three horizontal and ten vertical
split sections (cf. Fig. 3) for every side- and top-view image.
This results in 208 numerical features in the xim subvector.

Whereas most features of our previous work [8] are reused,
we now include the distance to the last intersection instead of
the obstructed-LOS (OLOS) distance. In addition, the receiver
height is omitted, as the considered receivers operate on the
same height of 1 m. The resulting feature vector contains 218
features that can be classified into four subvectors (see Tab. I).

As pointed out in Section III-A, the scenario corresponds
to 3GPP’s InF-DH definition. Therefore, we rely on the
corresponding NLOS path loss prediction model introduced
in [9, Tab. 7.4.1-1] for estimating LPL and ˆRSRPanalytical.

TABLE I. LOGICAL SUBVECTORS FORMING THE FEATURE VECTOR

Subvector Features

xpos Delta positions (∆x,∆y,∆z), main antenna beam devia-
tion (∆φ,∆θ), 3D distance d3D

xdp Distance to first intersection, distance to last intersection,
number of intersections

xim Ratio of black and grey pixels for three horizontal
(h0...h2) and ten vertical (v0...v9) split sections for side-
(xsv) and top-views (xtv) of the DP

xcom Empirical path loss LPL

2) Synthetic Data Basis: Thousands of data points are re-
quired to train and validate an ML model. We rely on synthetic
data generated with the commercial ray tracer Wireless InSite
[25], which is calibrated based on our real-world measure-
ments from [21] that would be insufficient on their own as
they only cover certain pathways and were conducted with
mobile devices. Ray tracing simulations are performed for
twelve distinct transmitter positions, located at the walls and
ceiling (cf. Fig. 2b) of the hall using two distinct antenna
configurations and a REM resolution of 0.5 m. The resulting
receiver grid contains 9,936 positions at a fixed height of 1 m.
The obstacle distribution at this height results in a clutter
density of 25.05 % with these positions being eliminated from
the data set. The beam patterns are learned implicitly with one
value in the feature vector indicating the utilized beam pattern
and given the main antenna beam direction. The feature vector
is extended by a numerical value indicating whether beam
pattern one or two is utilized. While antenna configuration
one has a field of view of roughly 90° [1], the other antenna
radiates omnidirectionally. Both antennas are using bandwidth
of 100 MHz, a subcarrier spacing of 60 kHz, and a center
frequency of 27.1 GHz. Overall, the resulting dataset consists
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Fig. 5. RSRP scattered over the distance for one RU together with 3GPP InF
DH and fitted AB models

of 88,820 RSRP samples. See references [21] and [26] for
detailed information on the ray tracing specifications.

IV. DATA ANALYSIS, ML REGRESSOR DESIGN, AND
PERFORMANCE EVALUATION

A. Fitting and Evaluating Empirical Path Loss Models

Fig. 5 shows the determind RSRP over the distance for
one RU together with the 3GPP InF DH LOS and NLOS
models. As it is evident, the empirical model cannot capture
the complexity of the environment and greatly simplifies. It
achieves an Root Mean Square Error (RMSE) of 49.24 dBm.
The 3GPP models belong to the class of the floating intercept,
or alpha-beta (AB) models, following the equation below:

PL = α+ 10 · β log10(d) +Xσ (1)
where α is the intercept in dB, β is the slope, and Xσ is a
zero mean Gaussian random variable with standard deviation
σ in dB [5]. We used the measurements for one RU near the
main antenna beam (−5° < ∆θ < 5° and −5° < ∆φ < 5°)
and fitted α and β for LOS and NLOS situations. The fitted
parameters in the LOS case are α = 42.91, β = 2.63 and in
NLOS case α = 34.75, β = 4.00. Although the fitted model
appears to follow the data trend better, it achieves an RMSE of
49.67 dB, which is as poor as with the 3GPP model. In [10],
the effect of building materials is provided by the ITU. The
attenuation rate per meter can be derived by the following
equation, with f being the frequency in GHz:

A = 1,636 · c · fd

√
a · f b

(2)

However, the parameters (a, b, c, d) given for metallic surfaces
lead to extremely high obstacle shadowing values. Therefore,
we fitted a parameter set for the obstacles in our environment
with a = 1.7541, b = −0.0536, c = 0.0076, and d = 1.0784.
Using the fitted alpha-beta model together with the obstacle
shadowing reduces the RMSE to 33.30 dB. While significantly
better, this enormous RMSE value nonetheless demonstrates
that more accurate channel models are required.

B. Machine Learning Model Selection and Optimization

Due to the dataset’s high dimensionality, we focus our
model selection on two powerful, non-linear regressors: a gra-
dient boosted RF – namely Light Gradient Boosting Machine



(LGBM) – and an ANN, both capable of capturing complex
relationships in high-dimensional spaces. We build on the
Python libraries scikit-learn and PyTorch.

For both models, we performed a Bayesian optimization
to find a suitable hyperparameter set with roughly 1,000
combinations tested for each. The upper part of Tab. II gives
an overview of the candidate hyperparameter values together
with the found optimal combinations for the considered ANN.
The blue highlights indicate the found optimal combination.
Similar to [22], the hidden layers double in size until the
maximum number of neurons is reached and then halve in size.
The considered hyperparameters of the LGBM are provided
in the lower part of Tab. II.

TABLE II. CANDIDATE AND SELECTED HYPERPARAMETERS

Hyperparameter ANN Candidate Values

# Neurons in First Layer [64, 128, 256, 512 ]
Maximum # Neurons [128, 256, 512 , 1024]
# Hidden Layers [4, 5, 6, 7, 8 , 9, 10]
Batch Size [64, 128, 256, 512, 1024 , 2048]
Learning Rate [ 1e-3 , 5e-4, 1e-4]
Weight Decay Factor [ 1e-3 , 5e-4, 1e-4]

Hyperparameter LGBM Candidate Values

# Trees [50, 100, 150, 200, 250, 300 , 500, 1000]
Max. depth [5, 10, 15, 20, 25, 30, 40 , 50, 70, 100]
Max. leaf number [20, 50, 100, 200, 300 , 500, 1000]
Learning rate [ 1e-1 , 1e-2, 1e-3, 1e-4]
Bagging frequency [1, 2, 3, 4, 5, 6 , 7, 8, 9, 10]
Min. Number of data
in one leaf

[1, 5, 10, 20, 50 , 100, 200, 500, 1000]

Subsample ratio of the
training instances

[0.5, 0.6, 0.7, 0.8, 0.9, 1.0 ]

Subsample ratio of columns
when construction each tree

[0.5, 0.6, 0.7 , 0.8, 0.9, 1.0]

selected hyperparameter

C. Performance Comparison and Evaluation
Based on the hyperparameter combinations found, the final

models can be trained. In order to examine the generalization
behavior, not only a global, but also cross models are trained:

• Global: The model is trained on the basis of 80% of the
entire data set.

• Cross: For each RU position, the ML models are trained
based on all remaining RU positions, but without taking
the RU position of interest into account.

Fig. 6 shows the resulting Empirical Cumulative Distribu-
tion Function (ECDF) on the remaining 20% that were not
considered during global training. For cross evaluation, the
test samples were evaluated on their respective cross trained
models. As it can be observed, the global LGBM model
achieves the best performance with an RMSE of 7.16 dB. It
outperforms the corresponding ANN variant by 0.43 dB in
RMSE. However, ANN allows for concepts like TL, which
may be relevant for future model adjustments. The cross
variants achieve poorer RMSE values of 9.77 and 10.75 dB,
respectively. Nevertheless, this is significantly more accurate
than the predictions of the empirical models. The 3GPP

Fig. 6. Comparison of ML-based models global as well as cross trained
together with empirical benchmark models

InF DH and fitted AB model achieve similar RMSEs of
only 15.34 and 15.96 dB, respectively. The fitted AB model
combined with fitted obstacle shadowing yields the worst
prediction accuracy with 27.12 dB in RMSE as it mainly
overpredicts the path loss in NLOS case.

D. Spatial Prediction Fidelity

To gain more insight into the differences between the
specific models, Fig. 7 shows REMs generated by various
models for a specific transmitter position. The ground truth
based on the ray tracing simulation can be seen on the left,
followed by the REMs generated by the global and cross
trained LGBM and ANN models. This is complemented by
two empirical benchmarks: the 3GPP InF DH model and our
fitted AB model with obstacle shadowing (cf. Sec. IV-A).
While the global trained LGBM model provides the most
accurate REM with only 4.28 dB in RMSE, the worst REM
is achieved by the fitted AB model with obstacle shadowing
with an RMSE of 28.47 dB. Overall, it can be seen that all ML
variants can replicate the ground truth very well, even if the
transmitter position was not seen during training. The ML-
generated REMs look somewhat smoother than the ground
truth, as the models can mainly reproduce the large-scale
effects, and local small-scale effects cannot be captured with
certainty. It can be observed that the LGBM can partly map
these local effects when trained in a global manner due to
its decision tree structure, which leads to a noticeably lower
RMSE than achieved by the ANN.

In the lower part of Fig. 7 the REMs can be seen for
a smaller region of 30m × 10m allowing for a clearer
identification of the differences. The global LGBM closely
resembles the ground truth but with reduced noise. In the
cross trained LGBM REM, it can be seen that the predictions
for (x, y) ≈ (70m, 10m) are too pessimistic and shading
in the bottom left corner was not recorded correctly. The
global trained ANN captures the overall trend pretty well,
but appears to be too smooth compared to the ground truth
and corresponding LGBM REM. The cross trained variant
captures the shading effects in the lower left corner pretty well,
especially compared to the LGBM model. In contrast to the
latter, the model is too optimistic for (x, y) ≈ (70m, 10m).
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The 3GPP InF DH model is not able to cover the effects of
the environment and is too optimistic overall. By contrast, the
AB model with obstacle shadowing is overly pessimistic by
default, and the captured obstacle shadowing does not align
with the ground truth, as reflections, for example, are not
modeled.

E. Analysis of Feature Contribution and Generation Overhead

Generating all features used by the ML models to predict
the REM from Fig. 7 takes 198 s utilizing a NVIDIA A100-
PCIE-40GB for GPU acceleration. Predicting those 7,285 data
points using the ANN takes 1.11 s and using the LGBM only
0.05 s. For the sake of completeness: The training of the global
ANN takes 214.62 s and of the LGBM model 9.47 s. Compared
to the CPU-based ray tracing with ray interaction settings
for high speed (3× reflections allowed, 0× transmissions
(no metal object penetration), 1× diffraction, and paths with
< −150 dBm are dropped) that takes approximately 90 min
for REM generation, the 3.5 min needed to perform the ML
predictions appears to be very short. However, most of the time
falls back on the feature generation. Therefore, we analyze the
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Fig. 8. Relative frequency importance of the feature subvectors (cf. Tab. I)

impact of the different feature classes and the time needed for
generating those in more detail.

To analyze the importance of the features, we investigate
the frequency importance of the global trained LGBM model.
We grouped the features according to the classes introduced
in Tab. I with additional division into the single images.
The relative feature importances can be seen in Fig. 8. The
features based on the side-view (xsv) and lowest top-view
image (xtv0) are considered the most important with each
having 15.8% importance. With increasing height of the top-
view image, the importance of the features decreases, with the
exception of the highest top-view image. This appears to be
a reasonable outcome, given that the clutter density decreases
with increasing height and that the receiver height is close to
the ground level. Although the Direct Path feature class (xDP)
is not considered as important as the images, it holds the most
important feature, which is found to be the distance to the first
intersection.

Although the side-view features are recognized as the most
important feature group, most of the time (42.45%) required to

TABLE III. RELATIONSHIP AMONG FEATURE SUBVECTORS (CF. TAB. I),
FEATURE GENERATION TIME AND TEST RMSE

Feature
Generation

Time [s]

Feature Subvectors Test RMSE [dB]
xpos xcom xdp xsv xtv global cross

✓ ✓ ✓ ✓ ✓ 173.35 7.16 9.35
✓ ✓ ✓ ✓ 132.41 7.32 9.92
✓ ✓ ✓ ✓ 73.58 7.21 9.38
✓ ✓ ✓ 24.63 7.27 10.25
✓ ✓ 8.01 7.71 12.83



create the features falls into this category. Thus, we trained the
LGBM without the side-view features to analyze the prediction
accuracy for the global as well as one cross variant. The results
can be seen in Tab. III. Eliminating the side-view images
from the process reduces feature generation time, while the
test RMSE only slightly deteriorates. In contrast, eliminating
the top-view images saves less time, while the test RMSE
increases noticeably. When using solely xpos and xcom (cf.
Tab. I), the feature generation takes less than ten seconds but
at the cost of a high test RMSE in cross comparison.

V. CONCLUSIONS AND OUTLOOK

This work presented an ML-based radio propagation model
for mmWave communication in complex industrial scenarios.
The model relies on a vast range of numerical features, incor-
porating features extracted from multiple top-view images of
the environment and a side-view image of the transmitter and
receiver’s direct path based on a privacy-preserving level-of-
detail 3D representation of the scenario. Two ML regressors
were investigated: an LGBM and an ANN. Both approaches
are capable of accurately capturing the propagation character-
istics and outperform traditional empirical modeling methods
for unseen transmitter positions by 5.57 dB in RMSE.

In future work, the presented model will be further refined
and validated using additional data from diverse and varying
densely cluttered indoor industrial environments to improve
its generalization capabilities. We also aim to develop a fine-
tuning routine with real-world measurements to allow for
efficient model adaptation even if only a small amount of
measurement data is available. Furthermore, we aim to transfer
the proposed mmWave propagation model into our existing
network planning approach for active RUs [27] as well as for
the network design with passive Intelligent Reflecting Surfaces
(IRSs) [26].
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