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Abstract—Throughput-critical teleoperation requires robust
and low-latency communication to ensure safety and performance.
Often, these kinds of applications are implemented in Linux-based
operating systems and transmit over virtual private networks,
which ensure encryption and ease of use by providing a dedicated
tunneling interface (TUN) to user space applications. In this
work, we identified a specific behavior in the Linux TUN driver,
which results in significant performance degradation due to the
sender stack silently dropping packets. This design issue drastically
impacts real-time video streaming, inducing up to 29 % packet loss
with noticeable video artifacts when the internal queue of the TUN
driver is reduced to 25 packets to minimize latency. Furthermore,
a small queue length also drastically reduces the throughput of
TCP traffic due to many retransmissions. Instead, with our open-
source NODROP Patch, we propose generating backpressure in
case of burst traffic or network congestion. The patch effectively
addresses the packet-dropping behavior, hardening real-time video
streaming and improving TCP throughput by 36 % in high latency
scenarios.

I. INTRODUCTION

Secure networking has gained increasing importance recently
due to the growing number of cyberattacks and the general
intention of digitizing many public use cases. While most
applications rely on secure data transmission for privacy
purposes, applications like vehicle teleoperation require it for
safety reasons. Aside from real-time video streams, also critical
downlink control commands require secure data transmission to
keep bad actors from interfering with the vehicle’s control. For
securing these transmissions different approaches can be chosen.
First, a transport or application layer encryption approach can
be selected. In this approach, each application is responsible
for encrypting and decrypting its data using protocols like
Transport Layer Security (TLS). While this approach secures
each application independently, preventing a system-wide
breach, each must support these protocols. Furthermore, each
new application has to be configured individually to ensure data
security. Therefore, another established approach is using so-
called Virtual Private Networks (VPNs), which provide a secure
tunnel between the sender and receiver system and encrypt
all traffic sent through it. So, each application does not have
to ensure encryption but can rely on the VPN. Accordingly,
using VPNs is the obvious choice in many cases. On Linux,
most VPNs rely on the TUN driver for providing a user space
network interface as seen in Fig. 1. Our previous work [1] uses
the multi-link aggregation software SEAMLESS [2] to enable
reliable real-time teleoperation. SEAMLESS also relies on the
aforementioned TUN driver to enable general compatibility
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Fig. 1. Visualization of a typical VPN-enabled secure teleoperation setup,
highlighting the sender stack with regard to the investigated TUN driver.

with all user space applications. To ensure minimum worst-case
video latencies, we drastically reduced most of the queues on
the sender side. While most queues performed as expected,
we encountered unexpected packet drops when reducing the
internal queue of the TUN driver below the default value,
resulting in many video artifacts and unusable video streams.
Our key contributions are summarized as follows:

• We identify the root cause of the packet dropping behavior
within the Linux kernel TUN driver.

• Propose the NODROP Patch [3] to address these drops.
• Benchmark the patch on real-time video streaming and

throughput tests over established user space VPN solutions
like OpenVPN and WireGuard Go.

The remainder of this paper is structured as follows: After
we discuss the related work in Sec. II, we analyze the root
cause of packet dropping and propose a solution, the NODROP
Patch, in Sec. III. Sec. IV focuses on an in-depth comparison
of the impact on established VPN solutions. We conclude our
work in Sec. V and provide an outlook for future research.

II. RELATED WORK

Generally, real-time teleoperation has strict requirements
regarding latency and throughput of the used communication
link. In [4], a maximum one-way latency of 100 ms is required
for a minimum data rate of 32 Mbit/s to control a teleoperated
vehicle safely. In addition, [5] rather specifically specifies a
round trip time requirement of a maximum of 250 ms for
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Fig. 2. Overview of the user space Linux VPN network stack highlighting the default TUN drivers behavior as well as the proposed NODROP Patch [3].

proper teleoperation. Furthermore, [6] found that the quality
of teleoperation generally deteriorates at higher latencies.

The Linux kernel’s TUN driver is widely used. It is a crucial
part of Software Defined Radio (SDR)-based solutions like
GNU radio [7], [8] and is part of open 5G solutions like e.g.
openairinterface [9]. In addition, most established VPNs use
it to provide user space applications with a network device
for communication. Although the TUN driver, as part of the
combined TUN/TAP driver [10], has been in the Linux Kernel
since 1999, potential improvements are still identified [11].
Proper backpressure behavior of lower-level network layers
is key for user space applications like the aforementioned
adaptive video stream of [1]. Additionally, approaches like
QAware Multi-Path TCP [12] and general packet scheduling
approaches [13] also benefit from the backpressure.

III. PROPOSING THE NODROP PATCH

In order to identify the reason for the packet drop encoun-
tered in [1], the network statistics were first examined. This
made it possible to determine that the issue was not due
to transmission errors of real network interfaces but explicit
TX DROPs in the TUN interface.

1) Analysis of the default TUN driver behavior: During the
in-depth analysis of the TUN driver source code, it was found
that the current implementation explicitly drops packets when
the internal queue overflows. This internal queue is referred
to as the TUN queue in the following. Due to the packet loss,
applications at a higher level of the sender stack can transmit
their data as fast as possible without any feedback on potential
congestion. In the case of Transmission Control Protocol (TCP),
it results in many avoidable retransmissions. Furthermore,
queuing disciplines (qdisc) like the ’prio’ qdisc, commonly
used for QoS, typically have no effect when used with a TUN
interface. Fig. 2 illustrates the current implementation of the
TUN driver and our proposed NODROP Patch for mitigating
the packet drops, which is described in the following.

2) Implementation and Validation of the NODROP Patch: To
work out a possible solution for this problem, we first compared
the TUN implementation with other driver implementations
of real network interfaces. It revealed that those drivers use
a start/stop flow control, which disables the queuing into the
interface whenever their internal queue is full. Then, after
the internal queue is cleared to some extent, the queuing
is reenabled. In addition to preventing packet drops, this

approach allows upper-layer applications to detect congestion.
Consequently, we adopted this approach for the TUN driver
with the NODROP Patch. A measurement setup is implemented
to support the hypothesis of the identified flaw in the TUN
driver and the validity of our proposed fix. Fig. 3 illustrates the
setup, which allows us to analyze the behavior and performance
of the isolated TUN interface.
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Fig. 3. Implemented validation pipeline consisting of sender and receiver with
customizable packet processing rates, allowing to induce artificial backpressure.

For this purpose, we implement a custom transmission
application that sends packets to the TUN interface as fast
as possible. Conversely, a custom application reads packets
from the TUN interface as fast as possible. With this setup, the
default kernel and our proposed NODROP Patch are analyzed
using different TUN queue sizes. Fig. 4 presents the result for
the overall throughput and the data rate of lost traffic on an
Intel© Core™ Ultra 7 165U with disabled Turbo-Boost. For
the default kernel, it is shown that no packet loss is present
for TUN queue sizes of 1000 packets or more.
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An increasing number of lost packets can be observed for
TUN queue sizes equal to or smaller than the default TUN
queue size of 500 packets, which is reflected in the loss data rate.
Furthermore, the measurements of the NODROP Patch confirm
that the suspected code was responsible for the observed packet
drop behavior. No packet loss was recorded for any TUN queue
size, even down to 1 packet. The results also show that the
NODROP Patch achieves a consistent throughput level for
TUN queue sizes greater than 10 packets. It has a negligible
impact of around 4% compared to the default kernel. For TUN
queue sizes smaller than 10 packets, a drop in throughput can
be observed for both kernel versions, but while the NODROP
Patch has no losses, the default kernel drops up to 1100 Mbit/s.

IV. CASE STUDY: THE NODROP PATCH IMPROVES USER
SPACE VPN PERFORMANCE

Following the previously achieved successes, the next step
was to apply the NODROP Patch to the problem of real-time
video streaming via VPN from the motivation. In this case,
a representative selection of VPN protocols is made. First,
it was ensured that all these use the TUN driver for their
user space implementation. The VPNs under consideration
include the older but still widely used OpenVPN and the user
space implementation of the new state-of-the-art WireGuard,
the so-called WireGuard Go. In addition to the kernel imple-
mentation of Wireguard, which is mainly referred to, its user
space implementation is of specific relevance nowadays. For
compatibility reasons, most of the new mesh VPN solutions like
Tailscale & Netbird [14] rely on this user space implementation.
In addition, the multi-link solution SEAMLESS, which also
relies on the TUN driver, is considered as part of the original
motivation. Finally, the Linux kernel implementation of the
WireGuard VPN is also validated as a benchmark. In general,
the contestant protocols rely on similar principles. While
WireGuard (Kernel/Go) and SEAMLESS rely on the User
Datagram Protocol (UDP) transport protocol, OpenVPN can
use both UDP and TCP. We only consider the UDP transport
mode for the latter measurements for comparison. Furthermore,
no specific configurations, aside from necessary key generation
and endpoint configuration, were performed for the VPNs to
observe near-default behavior, which refers to the standard
settings of the VPNs without any additional optimizations.

Fig. 5 shows the evaluation setups for the following mea-
surements. On the one hand, a laboratory setup (referred to as
Lab Setup) consisting of a Lattepanda 3 Delta as a sender and
a significantly faster Lattepanda Sigma as a receiver. As the
receiver side is significantly faster than the sender, packet loss
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Fig. 5. Measurement architecture for the lab setup and real world measurements
in regard to different user space applications, VPNs, and kernel parameters.

on the receiver side is minimized. The sender and receiver are
connected over a Lattepanda Sigma that acts as an ethernet
bridge and can emulate delay similar to the vSTING Approach
[15]. On the other hand, a setup with two Virtual Private Server
(VPS) is utilized, where the servers are connected over the
Internet (referred to as Real-World Setup). The first server,
acting as the sender, is located in Germany, while the other
server is located in the United States, resulting in a Round Trip
Time (RTT) of 120 ms between the servers. For both setups, we
implement an orchestration unit, which controls the sender and
receiver units and, in the laboratory setup, the ethernet bridge
as well. On the sender unit, different user space applications,
such as iperf3 for throughput measurements and a real-time
UDP Videostream for teleoperation analysis, can be selected.
The orchestration unit then selects the current VPN software
under study and applies specific kernel settings, such as the
NODROP Patch or varying TUN queue sizes of the sender.

Any kernel-related parameters are set to the default on the
sender side, while on the receiver side the socket buffer size
was significantly increased which further minimizes packet loss
on the receiver side. In the following chapters, we discuss the
key results from our studies, beginning with the performance
of a real-time video stream over VPNs with a reduced TUN
queue to minimize worst-case latency.

A. Impact on Real-time Video Streaming

This measurement transmits a UDP-based video stream
using VPNs over the lap setup. The requirements for the
video stream are based on [1] with a data rate of 25 Mbit/s.
The measurements were performed for all VPNs as well as a
baseline measurement without a VPN. It was found that similar
to the observed artifacts with the SEAMLESS approach, the
quality of all transmissions over VPNs suffers from reduced
TUN queue sizes, which are required for a low latency. Fig. 6
shows a screen capture of the impact for OpenVPN at a TUN
queue size of 500 and 25 packets. A link to the resulting Videos
after the transmissions with different VPNs and TUN queue
sizes can be found in the caption of Fig. 6. While all VPNs
perform decently for a TUN queue as low as 100 packets, all
gain significant artifacts when reduced further. At 50 packets,
WireGuard Go gains more minor artifacts, while OpenVPN
and SEAMLESS suffer significant picture distortion, making

OpenVP�
TUN queue size of 500 packets

OpenVP�
TUN queue size of 50 packets

OpenVP�
TUN queue size of 50 packets

NODROP Patch OpenVP�
TUN queue size of 50 packets

Original

Major Artifacts

Fig. 6. Video transmissions for OpenVPN with default and reduced a TUN
queue size (with and without NODROP). A complete comparison video
containing the other VPNs can be found at https://youtu.be/oWlB Xls2Ys.



them unsuitable for teleoperation applications. When reduced
further, all VPNs are unusable for reliable transmission. In this
case, the video data rate is significantly lower than the available
throughput, but buffer overflow still occurs. It was concluded
that the video encoder produces burst traffic on a video frame
basis, overwhelming the reduced buffer and resulting in packet
drops. This hypothesis is further empowered by examining the
video stream performance with the NODROP Patch enabled
for all VPNs. In this case, the TUN queue can be reduced to
1 packet without artifacts.

B. Impact on TCP-Throughput Performance
Next, the effects on the throughput of a TCP connection

were considered. Like the UDP video stream, TCP connections
are stream-based and react sensitively to packet loss. They
require retransmissions for lost packets, halt the congestion
window, and possibly reduce the throughput. First, we look at
measurements using the Lab Setup. For low RTT, no latency
was imposed, and only the TUN queue size was varied. Fig. 7
shows the achievable TCP throughput for the different VPN
solutions with and without the NODROP Patch for different
TUN queue sizes and a measurement without a VPN as a
reference. It is initially noticeable that the throughput of all
VPNs without the NODROP Patch strongly depends on the
TUN queue size. Similar to the previous observations for the
video stream, the data rate achieved drops sharply from a
TUN queue size of less than 100 packets down to almost no
throughput for a queue size of 1. Furthermore, as with the
video stream measurements, the NODROP Patch drastically
improves the performance of all VPNs for smaller TUN queue
sizes up to similar data rates as the default kernel with queue
sizes above 100. The optimum solution in this case would
be the Wireguard Kernel module, which comes close to the
practical maximum of a few percent.

Next, this behavior should also be validated again in a
realistic setup. For this purpose, the setup with the overseas
VPS, which has an RTT of around 120 ms, was chosen. The
corresponding results, again depending on the TUN queue
size, are shown in Fig. 8. In this case, the results differ
from the measurements without additional latency. First of
all, the generally achievable throughput is significantly lower.
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Furthermore, the VPNs without the NODROP Patch require
significantly larger TUN queue sizes (approx. 1000 packets)
to achieve data rates similar to those of the patch. At the same
time, the NODROP Patch enables consistently high data rates
regardless of the TUN queue size. The patch improves the
performance of all VPNs with the default tun queue size by
up to 36% (OpenVPN). Interestingly, the Wireguard kernel
does not perform ideally at the higher RTTs and falls behind
the NODROP user space variants. After these measurements
with increased latency showed substantial deviations from those
without imposed latency, the next step was considering different
latencies in the lab setup for the default tun queue size of 500
packets. The corresponding results for TCP throughput are
shown in Fig. 9. Here, the strong dependence between the
TCP data rate and the RTT can be seen for all methods. Due
to the higher RTT, it takes longer for the transmitted packets
to be acknowledged, which means that further data is initially
held back. Initially, substantial variance in the data rates can
be seen for all VPNs without the NODROP Patch, which
increases for OpenVPN and SEAMLESS with increasing RTT.
At the same time, the NODROP Patch improves the data rates
drastically for all methods of a factor of up to 4.7x with a
slight increase in variance for higher RTTs. Wireguard Kernel
shows a consistent data rate depending on the RTT.

Due to the significantly reduced outliers with Wireguard
Kernel, and with the NODROP Patch, it is reasonable to assume
that extensive retransmissions cause performance losses for
the unpatched VPNs due to TUN queue packet drops. To
finally clarify this, the retransmissions for all procedures were
analyzed for both vSTING and the overseas VPS scenario.
Identical behavior was observed for all procedures using the
TUN driver, which is represented in Fig. 10 by a time graph
for the transmission of WireGuard Go in the overseas VPS
setup. For the unpatched driver, it can be seen that the utilized
TCP CUBIC algorithm [16] continuously attempts to increase
the congestion window. However, the overloading of the TUN
queue results in packet drops, which are reflected in an increase
in retransmissions. TCP reduces the congestion window again
accordingly. After a specific time, another attempt is made to
increase the congestion window, resulting in retransmissions.
In comparison, the NODROP Patch does not experience packet
drops, which means that TCP maintains a continuously high
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congestion window and achieves a correspondingly high and
consistent throughput. No retransmissions occurred in the
measurements for the NODROP kernel during the measurement
period in multiple tests.
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V. CONCLUSION AND OUTLOOK

In this paper, a specific behavior of the Linux kernel TUN
driver was identified, which leads to silent and preventable
packet drops (up to 29 % for a reduced TUN queue size of
25 packets), significantly degrading the performance of real-
time video streaming over VPNs. We proposed the open-source
NODROP Patch to address this issue, allowing the TUN queue
to be reduced from 500 down to even one packet, thereby
drastically reducing the worst-case latency without impacting
the video stream. At the same time, the Patch enables significant
throughput improvements of up to 36% for TCP transmission
for an intercontinental connection at a RTT of 120 ms. Aside
from efforts to merge the NODROP Patch into the mainline
kernel to make it broadly available to major distributions like
Ubuntu and Fedora, future work will focus on the impact of
the NODROP Patch on open 5G core networks, which also
rely on the TUN driver. In addition, another focus will be on
further improving the Linux sender stack.
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