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Abstract—As global energy needs shift towards sustainable
sources, Concentrated Solar Power (CSP) plants are increasingly
relevant due to their ability to convert sunlight into electrical
energy using vast fields of motorized heliostats. However, the
effective management of CSP operations presents significant
communication challenges, especially in coordinating the precise
and rapid adjustments needed for heliostats under varying
environmental conditions and integrating data-intensive Un-
manned Aerial Vehicle (UAV) systems for plant calibration and
monitoring. In this paper, we implement a predictive traffic
steering strategy based on Machine Learning (ML) and Network
Slicing to optimize resource allocation in a mixed-critical power
plant communication environment, comprising a critical Machine
Type Communication (cMTC) heliostat control service and an
enhanced Mobile Broadband (eMBB) high-quality calibration
camera stream. Evaluated in a 5G testbed with real-world
channel conditions, our results demonstrate that the developed
traffic optimizations can ensure 100 % service reliability for
critical applications, even during severe network congestion.

Index Terms—5G Campus Networks, Scalability, Mixed-
Critical, Network Slicing, Concentrated Solar Power Plants

I. INTRODUCTION

The demand for clean energy production leads to the
development and optimization of green power plants. As a
promising solution for electrical power generation CSP plants
have gained new attention in recent years. Using motorized
mirrors, called heliostats, sunlight is reflected over an area of
several km2 to a local receiver tower, which transforms thermal
energy into electrical energy [1]. Due to the natural movement
of the sun, heliostats are frequently repositioned. Clouds
introduce additional challenges since the partial opacity of
heliostat fields disrupts the even illumination of the light
receiver and produces critical local temperature differences.

Tracking heliostats requires fast and reliable communication
networks between a central control system and each field unit.
Currently, the transmission is performed by wired networks,
which makes building new CSP plants expensive due to the
groundwork for up to hundreds or thousands of individual
heliostats. Additionally, new services such as automated UAV-
based calibration of heliostats require wireless high data
rate communication throughout the heliostat field. This paper
evaluates 5G campus networks for CSP power plants as a
holistic solution for field communication including heliostats
and calibration UAVs. The mixed critical scenarios for massive

Machine Type Communication (mMTC) and cMTC as well as
eMBB applications are based on definitions from the research
project 5hine, which analyzes 5G as a communication solution
for solar tower plants [2]. Although the data size of the helio-
stat communication is small, it is critical, nevertheless since it
is responsible for the safe operation of the plant (ref. Fig. 1).
To ensure precise heliostat orientation, periodic calibration
is required. For efficient and frequent calibration automated
UAVs will be used in 5G enabled CSP plants [2]. The UAV-
based calibration requires high data rate communication to
transmit a high-quality video stream besides UAV control and
status updates. Unlike heliostats, UAV communication is not
critical since the calibration procedure can be paused at any
point, provided that UAV control is still ensured.

In cellular mobile communication, several techniques exist
to address the challenges of mixed-critical traffic. In this
work, we propose an implementation of Network Slicing
in combination with predictive traffic steering, optimizing
network performance and reliability. Network Slicing allows
for the segregation of the network architecture to cater to both
critical and non-critical communications. Predictive Traffic
Steering dynamically manages traffic flows, enhancing the
responsiveness and adaptability of the network to varying
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Fig. 1: Multi-dimensional evaluation setup for mixed-critical
communication links in lab and field measurements.
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operational demands. Together, these strategies ensure robust
network performance across all user applications. In Fig. 1
the key contributions of this work are illustrated. Initially,
we conducted field measurements at a real-world CSP plant
to model the communication channel for heliostat and UAV
devices. From a simulation environment, we then collected
data on fluctuating cloud movements and the corresponding
heliostat traffic to train a ML model, enabling us to predict
future congestions and determine optimal times to throttle
the UAV video stream. We then utilized the pre-trained ML
model and the established channel model to translate the CSP
cell conditions into a scaled lab setup. Here, we performed
measurements using 70,000 virtual heliostats across five User
Equipments (UEs), testing and evaluating the network and our
traffic management methods in a mixed-critical scenario.

The sections of this work are structured as follows: First, an
overview of related work is given in Sec. II. Then, Sec. III de-
scribes the considered CSP applications and the mixed-critical
scenario. Afterward, in Sec. IV, the deployed technologies
to manage and optimize the traffic for the given scenario
are presented. In Sec. V, we then discuss the evaluation of
these technologies for the measured network Key Performance
Indicators (KPIs). Finally, Sec. VI closes the paper with a
conclusion and an outlook on future work.

II. RELATED WORK

Different wireless communication solutions were previously
evaluated for CSP plants. In [3], a mesh-based approach
was evaluated, using IEEE 802.15.4 devices for multi-hop
communication in the heliostat field. In a first field test with a
limited number of 93 devices, a packet error rate between 1 %
and 20 % was observed due to the lack of acknowledgments, as
acknowledged transmissions would overload the network. This
demonstrates that the IEEE 802.15.4 mesh-based approach
is limited for high-scaled heliostat fields. Another approach
using IEEE 802.15.4 mesh networks is discussed in [4].
Employing simulations with 340 heliostats, a Packet Delivery
Rate (PDR) of 93 % for nodes close to the base station and
88% at the edge of the field were obtained, which still offers
insufficient reliability. For critical communication, the network
was extended with an additional unicast communication link,
using sub-1-GHz frequencies for better signal ranges and, thus,
reliable emergency communication. The results demonstrate
that networks lacking centralized scheduling and resource
management are not well suited for reliable communication
of critical heliostat fields. In [5], the performance of private
high-density microcells using Narrowband Internet of Things
(NB-IoT) as an alternative 5G communication solution opti-
mized for small data transmissions is evaluated. The results
demonstrate that these networks can be massively scaled to
meet the requirements for monitoring and controlling heliostat
fields. Still, with NB-IoT, only small data transmissions with
low data rates are available, rendering UAV-based broadband
communication, as required in modern CSP plants, impracti-
cal. To evaluate the utilization of Network Slicing for mixed-
critical applications, the authors of [6] deploy an open 4G/5G
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Fig. 2: Real-world 5G measurements in a CSP plant for eval-
uating heliostat-specific attenuation and MCS characteristics.

radio testbed, integrating a modified Media Access Control
(MAC) layer scheduler for low latency communication. The
results demonstrate that the data rate and latency of higher-
priority slices can be stabilized under network strain. However,
due to the limited bandwidth of 5 MHz and low packet rates,
the scalability of the setup is not further explored. An alter-
native to 5G communication systems is presented in [7] with
OpenWiFi as a solution for flexible deployments in industrial
use cases, which can be adapted to different frequency bands,
especially for remote regions typyical for CSP plants. In [8]
and [9], the authors discuss the utilization of ML for Dynamic
Adaptive Streaming over HTTP (DASH) to proactively steer
network traffic for varying network conditions. Both studies
effectively show that by using predictive approaches, video
segments can be prefetched at the mobile edge, enhancing



overall video quality. However, in both instances, the video
server is either a large media server or a content delivery
network, which does not account for scenarios where the video
server must produce a real-time camera stream while being
constrained in terms of CPU and memory capacity.

III. MIXED CRITICAL APPLICATIONS FOR CSP PLANTS

5G networks for CSP plants allow heterogeneous applica-
tions, ranging from eMBB for video streams from field cali-
bration UAVs to mMTC/cMTC for monitoring and controlling
heliostat fields. This section describes the modeled data traffic
and channel conditions based on a real-world scenario.

A. Heliostat and UAV Application Models

Modern CSP plants range from hundreds of heliostats to
up to 70,000 heliostats in a single CSP plant [10], which is
used in this work as an evaluation scenario. Each heliostat
that received a new aim point from Downlink (DL) broadcast
transmissions transmits an individual status update with an
application payload of 120 bytes to the central control unit.
Since modern heliostats automatically track the natural sun
movement, only diverging aim point switches are transmitted,
for instance when clouds are shading parts of the heliostat
field. For the setup in this paper, simulation results for moving
cloud passages over a reference CSP plant and the associated
aim point switches of individual heliostats from [2] are used,
which can be assumed as a worst-case scenario due to the
assumed fast movement of clouds. With more extreme weather
conditions heliostats will drive in a protective position and
do not require additional aim point switches. The traffic
from the reference plant with 6482 heliostats is linear scaled
to the 70,000 heliostats considered in this work. For this
setup, it is assumed that the heliostats publish their status
updates in an interval of 10 s. This results in an aggregated
maximum throughput of 6.72 Mbps of the heliostat service.
Missing updates are interpreted as misaligned heliostats and
can result in emergency plant shutdowns preventing damage
from overheating. Thus, status updates of the heliostats are
critical for the plant [2] and require a reliability of 99.9 %.

In addition to the heliostat traffic, a UAVs transmits data for
field calibration and control. A high-definition video stream
using an H.264 codec with a data rate of 8 Mbps is used for
calibration of misaligned heliostats. Since this service is less
critical, the calibration is interrupted when network capacity is
limited and the UAV data rate is reduced to 1 Mbps for a low-
definition video stream. This renders the stream robust enough
to still maintain manual control of the drone. It is assumed, that
a service reliability of 99.9 % for the video stream is sufficient
given a robust codec is chosen [11].

B. CSP-specific Path Loss

To reproduce the specific wireless signal attenuation in
heliostat fields with their large metal frames and metal-coated
mirrors we performed signal quality field measurements in a
CSP plant in Jülich, Germany. A private 5G New Radio (NR)
campus network with a center frequency f of 3.75 GHz was

set up to provide 5G coverage to the heliostat field with 2000
heliostats as depicted in Fig. 2a. A mobile robot providing
different 5G antenna heights was used for comprehensive field
measurements. Fig. 2b presents the signal strength samples
from the field measurements. Since none of the available
Path Loss (PL) models fit the measured characteristic, a new
empirical model for a CSP-specific PL is derived:

PL = 34.36 log10(d)+7.83hm−4.0 log10(d)hm+17.59 (1)

with PL as the path loss in [dB], d as the distance between
the 5G base station and the heliostat / mobile robot in [m],
and hm as the height of the mobile robot antenna in [m].

Considering a radius of 1590 m for concentric CSP plants
with 70,000 heliostats [10], the PL model from Eq. 1 and the
uplink Modulation and Coding Scheme (MCS) samples from
the measurements in Fig. 2b we can derive a typical MCS
of 9 to be used in deeper parts of large-scale heliostat fields
when the base station transmit power is set to 20 dBm to limit
the private cell size. Therefore, for our lab measurements, the
utilized maximum MCS is 9 for a worst-case analysis.

IV. APPLIED 5G TECHNOLOGIES FOR MIXED-CRITICAL
APPLICATIONS

This section outlines the technologies used to achieve high
network reliability in mixed-critical applications. First, we em-
ploy Network Slicing to stabilize the highly critical heliostat
traffic during periods of network congestion. Additionally, we
deploy a predictive throttling technique as a way to proactively
reduce the bitrate of the UAV camera stream, ensuring the
reliable operation of the drone control.

A. Uplink Network Slicing in the Air Interface

Network Slicing stands as a pivotal technology in 5G
networks, enabling the logical division of a single physical
network into multiple virtual networks, each designed to meet
specific service requirements. For instance, in applications
that manage large-scale critical infrastructure communications
(cMTC) alongside less critical data streams (eMBB), Network
Slicing ensures that essential services maintain high perfor-
mance and reliability, even under significant network loads.
In this work, we adopt a modified Round Robin (RR)-based
Network Slicing strategy, tailored to scenarios that require hard
service guarantees and fixed prioritization between services.
In a RR scheduling mechanism that lacks internal weighting
among clients, the Next Generation Node B (gNB) scheduler
allocates resources fairly among all UEs via the Downlink
Control Information (DCI). As a result, all connected UEs
receive an equal share of resources, leading to an implicit over-
prioritization of services comprising multiple clients over those
with a single client. Consequently, the scheduling priority
of a service is given by Pservice = Nservice/Ntotal, where N
represents the number of connected UEs. In our experimental
setup we further increase the critical service priority by
enforcing that resource allocation is based on the order in
which UEs are registered in the 5G Core (5GC). Specifically, a
UE registered earlier (UE A) will always receive all requested



resources, while a subsequent UE (UE B) only receives the
remaining resources. This modification ensures that Service A
consistently receives priority over Service B independently of
the network traffic, safeguarding critical communications.

B. Traffic Management via Predictive Bitrate Adaptation

Traffic management in the form of Adaptive Bitrate Stream-
ing (ABR) plays a vital role in service quality assurance
by dynamically adjusting the quality of video streams to
match current network conditions, and optimizing bandwidth
usage while maintaining the stability of critical services.
Conventional ABR technologies, like DASH, work by en-
coding multiple streams with different bitrates simultaneously
on the server side. Clients then select the optimal bitrate
based on their current network conditions to ensure a con-
sistently smooth video stream. While effective, the concurrent
encoding of multiple streams requires substantial server-side
CPU resources. In scenarios like ours, where UAVs must
remain lightweight with limited processing power, multiple
concurrent encodings are not feasible. Instead, our approach
involves the host proactively adapting the bitrate of a single
stream depending on current weather conditions and network
congestion. Implementing proactive bitrate decisions during
real-time camera streams requires external, proactive throttle
commands. For this work, we designed and evaluated a ML-
based approach to manage this process. A supervised learning
method is employed, utilizing historical data that includes
the fluctuating proportion of shaded heliostats at the power
plant and the resulting share of heliostats that communicate
in the uplink to maintain the stability of the power plant.
The challenge is framed as a time-series forecasting problem,
with the model tasked to predict the proportion of transmitting
heliostats for the forthcoming control interval based on data
from previous intervals. Forecasted network congestions in
upcoming control intervals can then be utilized to proactively
throttle the UAV’s video stream. The dataset is generated
using a simulation environment as discussed in [2], where
a CSP with 6482 heliostats is assumed. It comprises 358
simulated data points, each representing the weather conditions
and the resulting communication effort of the heliostats within
a 10 s control interval. To predict the proportion of transmitting
heliostats at time frame t0, the input features include the share
of shaded heliostats from t−w to t0, and the proportion of
transmitting heliostats from t−w to t−1, with window size w.

To train and evaluate the model, the set is divided into
80 % training data and 20 % testing data. Using the scikit-
learn Python library [12], we deployed and compared the
following model types: Random Forest, Gradient Boosting,
and Support Vector Machine. The model’s hyperparameters
are optimized using grid search in combination with cross-
validation, optimizing the Mean Absolute Error (MAE) on
the training set. The best performance is achieved using
the Random Forest model with a window size of 5, 100
base estimators and a maximum tree depth of 10 as optimal
hyperparameters. The final Random Forest achieves an MAE
of 8.81 on the test data set.
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Fig. 3: Test data set to evaluate the Random Forest model.

Fig. 3 illustrates the fluctuating share of shaded heliostats
in [%] (green, right axis) and the resulting heliostat traffic,
measured as a proportion of the total number of heliostats
in [%] (blue, left axis). The prediction of this traffic (yellow,
left axis) is utilized to send proactive throttle commands to
the UAV during periods of network congestion. Though the
model’s performance might vary with different training and/or
test datasets, the significant peak of 100% within the test data
provides a challenging scenario to ensure a robust evaluation.
The plot demonstrates that the ML model can effectively
predict the trend of heliostat uplink traffic, thereby validating
its use as a trigger for proactive bitrate adaptation based on a
chosen threshold as depicted by the dashed red line.

V. LABORATORY MEASUREMENT SETUP AND RESULTS

This section outlines the measurement setup, evaluates the
baseline parameters, and assesses the performance of the
optimization techniques used.

A. Experimental Setup

For evaluating the discussed traffic optimization technolo-
gies, we deploy a 5G radio network. Focusing on traffic
optimization rather than maximizing network throughput or ro-
bustness via a commercial 5G solution, we utilize open-source
components. This approach allows us to extend the existing
resource scheduler, thereby enhancing the experimental capa-
bilities of our testbed. The 5GC is hosted using open5GS [13],
while the gNB is based on the srsRAN Project [14]. We imple-
mented the Network Slicing by modifying the RR Scheduler
in the MAC layer of srsRAN to prioritize scheduling based on
the order of UE attachment, as discussed in Sec. IV-A. Both
the 5GC and gNB are hosted on a shared server (AMD Ryzen
7735U, 32 GB RAM, Ubuntu 22.04.4). The radio frontend
of the gNB is deployed using a Universal Software Radio
Peripheral (USRP) B210 Software Defined Radio (SDR). The
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Fig. 4: Experimental setup consisting of an open 5G base station at the receiver tower, heliostats and UAV UEs.

cell operates in Time Division Duplex (TDD) mode at a
center frequency of 3.75 GHz, with a 30 MHz bandwidth and
30 kHz subcarrier spacing. To emphasize uplink traffic, the
following TDD pattern is utilized: DDDSUUUUUU. The UAV
UE operates on equivalent hardware as the gNB, while the
heliostat services are deployed on integrated single board
computers (ARM Cortex-A72, 2 GB RAM, Ubuntu 22.04.3).
All UEs are equipped with Quectel RM520N-GL 5G radio
modems. To ensure reliable and accurate measurements, all
UEs are synchronized with the gNB using chrony, leveraging
the Network Time Protocol (NTP) protocol for precise time
synchronization. The maximum MCS in both Uplink (UL) and
DL is set to 9 to match the network conditions described in
Sec. III. Fig. 4 illustrates the measurement setup, which is
integrated in a CSP laboratory demonstrator. The demonstrator
includes ten 2-axis motorized heliostat models equipped with
5G modems as well as a receiver tower model to visualize
communication and control procedures in CSP plants. The
heliostats are aligned to a light-emitting motorized spotlight
(Fig. 4 top right) and reflect light to the receiver tower, which
is equipped with a light intensity sensor to monitor and assess
the alignment of each heliostat. The demonstrator is controlled
using a digital twin as shown in Fig. 4 downright.

B. Data Generation and Performance Evaluation

To effectively evaluate the experimental scenario, we require
an application capable of generating highly scalable and yet
precise data rates. For this purpose, the developed application
layer client is designed to scale through adjustments in packet
size and the inter-arrival time of packets. The application’s
main loop operates dual-threaded to manage packet generation
and transmission via First In First Out (FIFO) buffers. Each

application data packet is structured to contain a Unix times-
tamp marking the time of packet generation and an identifier
for the host UE. The remainder of each packet is filled with
dummy data to achieve the desired packet size. Thread A is
responsible for generating these application layer data packets.
It operates in 100 ms batches, producing the required number
of packets and storing them in the application buffer. This
buffer is virtually unlimited in size, constrained only by the
host’s RAM capacity. Once Thread A completes the packet
generation for a batch, it enters a sleep state for the remainder
of the 100 ms period. Thread B continuously monitors the
application layer FIFO buffer. Upon detecting new packets,
it transfers them to the underlying User Datagram Protocol
(UDP) buffer, where they are prepared for transmission over
the srsRAN radio stack. If the UDP send buffer reaches full
capacity, thread B pauses, ensuring that no packets have to be
dropped on application layer. This method, however, can lead
to continuously increasing packet latencies over time if the
buffer remains full. At the receiver side, packets are collected
and assessed post-transmission. As each new packet arrives, its
arrival Unix timestamp is recorded. This data, combined with
the packet’s generation timestamp, enables the calculation of
throughputs and delays at the application layer by calculating
the difference between the generation and reception times.

C. Evaluated Key Performance Indicators

To assess the performance of the network and the effec-
tiveness of the deployed traffic management techniques, three
application layer network KPIs are measured for each service
at the receiver side: achieved throughput in [Mbps], UL one-
way packet delay in [ms], and service reliability in [%].
Service reliability is defined as the ratio of the number of
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Fig. 5: Evaluation of the deployed traffic optimization techniques compared to baseline 5G laboratory measurements.

successfully transmitted packets Nsuccess to the total number
of transmitted packets Ntotal in percent as expressed by the
formula Reliability = Nsuccess/Ntotal · 100%. A packet
delivery is considered successful if it reaches the receiver’s
application layer with a delay of one second or less since
packets with larger delays cannot be utilized by the service.
While reliability is crucial for the final assessment of service
quality, the other KPIs provide valuable insights into the dy-
namics of the network. For each evaluated configuration, 100
independent 10 s measurement runs, generating approx. 7.5
million data packets, are performed. All collected data packets
are aggregated into 200 ms batches using their timestamps to
calculate average throughputs, delays, and reliabilities within
these windows. Furthermore, to avoid inconsistencies during
the startup and shutdown of the processes, only time slots
where all UEs are in active state are considered and data points
from the first and last 200 ms batches of each measurement are
discarded. First, a baseline network performance is measured
without traffic optimization and a single UE per service. Then,
the performance of a scaled scenario with 5 heliostat UEs with
Network Slicing and predictive traffic management is assessed.

D. Network Baseline Performance

To establish a baseline for the network performance, we
initially measure the previously defined KPIs for each service
individually and then assess them in a mixed traffic scenario.
The results are depicted in Fig. 5a. From top to bottom, the
figure illustrates the achieved KPIs using a violin plot for
the throughput, a line plot throughout a 10 s interval for the
average packet delay at each time point, and a bar plot for
the service reliability. In the left column, the results for the
separated services are presented, whereas the right column
displays the results for mixed traffic. Starting at the top, it is
demonstrated that both services, when operating individually,
on average achieve their required throughput of 8 Mbps and
6.72 Mbps respectively. Since occasional drops in throughput
are compensated by following transmission intervals, packet
delays of both services remain within a stable range at
approx. 55 ms. These delays are induced by both the radio
stack and computational overheads. As a result, the service
reliability of both services is above their requirements. In
the mixed traffic scenario, the median throughputs decline



to 5.08 Mbps and 4.97 Mbps. This indicates that the RR
scheduler treats both services with equal priority since only
one UE is considered for the heliostats. As both services
underperform relative to their throughput requirements, packet
delays significantly increase above the paket drop threshold,
peaking at 5.03 s and 3.7 s. Despite the throughputs reduced
by less than 50 %, service reliability decreases to 20.01 % and
26.66 %, as successful packet deliveries are only possible at the
start of the transmission interval and UDP send buffers quickly
fill up. This demonstrates that, without Network Slicing or
traffic steering, congestion compromises the availability of
both critical heliostat control and UAV calibration services.

E. Results of the Applied Traffic Optimizations

Now that the baseline has been established, we proceed to
investigate the performance of the optimization techniques.
The same KPIs are measured across individual 10 s trans-
mission intervals as previously described. Fig. 5b, structured
similarly to before, displays these measurement results. This
time, the columns represent scenarios where only Network
Slicing is applied (left), and a combination of Network Slicing
and UAV throttling is applied (right). Starting in the top
left, the plot demonstrates that Network Slicing effectively
stabilizes the higher-prioritized heliostat traffic at a median
rate of 6.72 Mbps. As a result, the UAV throughput signif-
icantly underperforms relative to its requirements, reaching
2.44 Mbps. As illustrated in the delay plot, only the UAV
packet latency increases above the threshold, reaching up to
7.41 s. Subsequently, employing Network Slicing alone allows
the heliostat service reliability to reach 100 %, though at the
expense of the UAV service, which suffers from an even
lower reliability of 14.95 %. The right column examines the
combined effect of slicing and throttling. Here, the UAV trans-
mission is proactively reduced to 1 Mbps to maintain sufficient
reliability for UAV control. This results in the effective median
throughputs of 0.96 Mbps for the UAV and 6.72 Mbps for
the aggregated heliostats. Due to proactive UAV throttling,
the packet delays of both services remain stable at about
40.53 ms and 50.53 ms respectively. Ultimately, the service
reliability plot confirms that the combined application of these
technologies successfully maintains operations of 100 % for
both services, even under severe network constraints.

VI. CONCLUSION

In this paper, we developed and integrated a proactive
traffic steering mechanism based on 5G Network Slicing and
a Random Forest ML model. To validate our approach, we
established an open testbed reflecting real-world configurations
and channel conditions found in a CSP plant. In a mixed-
critical communication scenario, where a cMTC heliostat
control service competes for resources against a less-critical
UAV-based calibration camera stream, we demonstrated the
necessity of our deployed optimizations by showing that
during periods of high congestion, packet delays escalate up
to 5.03 s, resulting in service reliabilities as low as 20.01 %.
By predicting congestive intervals in advance using historical

weather data, we can proactively throttle the camera stream. In
combination with Network Slicing, prioritizing the highly crit-
ical heliostat control service, we managed to stabilize delays
at around 45 ms, achieving 100 % reliability for the heliostat
control and the UAV-based camera stream. In future work, we
plan to integrate ML predictions to explore a dynamic scenario
with fluctuating weather conditions, placing greater emphasis
on the real-time prediction performance of the model.
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