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Abstract—Energy efficiency is a major concern in the devel-
opment of future mobile networks. Besides the infrastructure,
a significant challenge is the power consumption of the user
equipment, as it directly affects the quality of experience. We
have conducted comprehensive laboratory measurements on the
latest commercial 5G devices to assess power consumption, con-
sidering different frequencies, bandwidths and duplex patterns.
A key result is the non-linear increase in power consumption
with uplink transmit power. An empirical model with machine
learning methods is proposed to enable quantitative analysis of
the power consumption based on the communication behavior.
By applying this model to an extensive data set, spatiotemporal
predictions of real-world user equipment power consumption
were performed. Depending on the deployment location and
communication behavior, battery life can be as much as five times
lower. These results can be utilized to perform energy-aware
scheduling and deployment site selection to enhance the energy
footprint of mobile platforms and Internet of Things devices.

I. INTRODUCTION

Power consumption is becoming increasingly important and
costly in the context of climate change. Recently, 5G mobile
network power consumption reduction has been a significant
research direction and further optimizations in future releases
are forthcoming [1–3]. User Equipment (UE) power consump-
tion, in particular, is critical for the battery life of mobile
network users and directly affects the quality of experience.
A lower power consumption improves sustainability, as charg-
ing or changing batteries becomes less frequent, and energy
harvesting approaches become more feasible. For Narrowband
Internet of Things (NB-IoT) devices, UE power consumption
has been noticed to rise by a factor of over three due to
decreased transmit power of base stations, drastically reducing
the expected battery life [4]. That shows the influence of
the signal strength on user device battery life and potential
contrary and complementary aspects of green networking.
In the context of a rapidly increasing number of mobile
subscribers and a swift rise in 5G capable UEs [5], changes in
the power consumption of user devices have a major leverage
effect.

In this paper, we are measuring the energy consumption
of 5G devices under different configurations to deduce an
empirical power consumption model, which can be applied
to assess real-world power consumption. Machine learning is
utilized to predict model parameters like the uplink transmit
power. As illustrated in Fig. 1, it varies strongly with context
parameters like the location, affecting the present wireless
channel. A specific energy efficiency per bit is reached based
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Fig. 1. User equipment (UE) power consumption resulting in different battery
life at given locations in smart city IoT deployments.

on the transmit power and the achieved channel data rate. This
efficiency can be degraded severely in poorly covered areas,
affecting UE battery life. Our model allows to avoid these
areas and thus reduce power consumption.

The remainder of the paper is structured as follows: After
discussing the related work in Sec. II, our approach to predict
UE power consumption is introduced in Sec. III, followed by
an overview of the methodological aspects in Sec. IV. Finally,
detailed results about the measured power consumption under
different scenarios and implications to real-world services are
provided in Sec. V.

II. RELATED WORK

A critical factor for UE energy consumption is the utilized
uplink transmit power of the UE. The power control of 5G
networks for the Physical Uplink Shared Channel (PUSCH)
can be described by Eqn. 1 [6].

PPUSCH = min





PgNB, max

PTX, max

P0,TX + 10 · log(2µ ·NPRB)+

αfrac · Ploss +∆MCS + fTPC

(1)

While the transmit power of the UE is bound by PTX, max,
a cell-specific maximum uplink power PgNB, max can be con-
figured too. PPUSCH is otherwise calculated as the sum of
the nominal UE transmit power P0,TX and further context-
dependent factors. These include the current bandwidth (ex-
pressed by the number of utilized Physical Resource Blocks
(PRBs) and the sub-carrier spacing µ), and the path loss PLoss.
The factor αfrac represents a fractional power control multiplier
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Fig. 2. System parameters and dependencies for machine learning-based
power consumption modeling of real-world 5G mobile networks.

enabling 5G networks to only partly compensate the path
loss, reducing inter-cell interference [7]. If the Modulation
and Coding Scheme (MCS) is changed while the channel
remains constant, the transmit power must be adapted by ∆MCS
to account for the changed Signal-To-Interference-Plus-Noise-
Ratio (SINR) requirements. The factor fTPC is used for closed-
loop power control with the help of Transmit Power Control
(TPC) commands from the Next Generation Node B (gNB),
fine-tuning UE transmit power [7].

In [8], a Context-Aware Power Consumption Model
(CoPoMo) for LTE is introduced, enabling energy consump-
tion prediction for 4G UEs based on system and context
parameters. One main result was the non-linear relationship
between the UE transmit power and the resulting UE energy
consumption. That led to important findings on power con-
sumption: UE battery life can be enhanced by scheduling and
efficiently utilizing carrier aggregation [9].

III. PROPOSED HYBRID MACHINE LEARNING APPROACH

In this work, the location, device type and the utilized
service profile are assumed to be given. As shown in Fig. 2,
these define the needed transmit rate. A tuple of granted PRBs,
an MCS, and a suitable transmit power may be selected based
on multiple cell parameters, resulting in a set data rate. The
transmit power directly affects the power consumption of the
UE, replicated by an empirical model similar to as proposed
in [8]. By utilizing the forecast of this model as feedback,
application parameters may be changed to comply with power
consumption requirements, or a more suitable deployment
location can be chosen. Radio Environmental Maps (REMs),
as a part of a mobile network digital twin, can be used to depict
real-world signal strength [10]. If no data is available at some
locations, raytracing or machine learning-based approaches
like DRaGon [11] or imputation methods could be utilized.
The scheduling of PRBs, MCSs and transmit power to UEs are
of crucial importance to the power consumption. In contrast to
a classical approach, these parameters are not assumed to be
given as input parameters. Instead, they are predicted using
machine learning to reflect real-world characteristics more
accurately.

IV. METHODOLOGY

A reproducible measurement setup is crucial for the sys-
tematic evaluation of UE power consumption. Our laboratory
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Fig. 3. Laboratory setup to evaluate user equipment power consumption.

setup is based on a 5G radio communication tester, which is
used to emulate a freely configurable gNB. An iperf server
is hosted on this device for User Datagram Protocol (UDP)
uplink data rate measurements to accurately replicate the
impact of uplink data transmits on the power consumption.
The hardware ports of the tester are configured so that uplink
and downlink signals are divided between two connectors.
Via a circulator and a signal splitter, a modem is connected
transparently to the split of the signal. Two different modems
were used for the measurements. Only the respective primary
antenna of both modems was connected, while the others were
terminated to decrease complexity. The modems are powered
with 3.3 V directly by a power supply with an integrated power
meter. A spectrum analyzer is connected to the uplink path to
verify the set uplink power.

These measurement devices are controlled by an Acceler-
ated Processing Unit (APU) via a local network. With the help
of an application programming interface, mobile network cells
are set up and started automatically. The APU then connects
the modem to the emulated 5G cell using AT commands and
the ModemManager. Finally, an uplink data rate measurement
is initiated before the power consumption and spectrum an-
alyzer measurements are triggered. After each measurement,
the modem is disconnected from the gNB to change settings.
This fully automated setup enables us to repeat measurements
and change measurement scenarios in a reproducible and fast
way. In Tab. I, the parameters of the setup are listed, with the
bold-printed parameters being used unless otherwise noted.

V. LABORATORY POWER CONSUMPTION MEASUREMENT
AND REAL-WORLD PREDICTION

With the help of the laboratory setup described in Sec. III,
multiple scenarios were evaluated. These include the variation
of the UE uplink transmit power PTX, the bandwidth B,

TABLE I
PARAMETERS OF THE LABORATORY MEASUREMENT SETUP

Parameter Value

Technologies 4G, 5G NSA and 5G SA
User Devices RM500Q-GL, RM520N-EU
Antenna Configuration Single input single output
Frequncy Bands n1, n28, n41, n78
TDD-Pattern 5 ms periodicity, 5-7 DL, 2-7 UL slots
Bandwidths 20, 50, 90, 100 MHz
MCS Index 20
Uplink TX-Power −20 dBm to 26 dBm
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Fig. 4. 4G, 5G NSA and 5G SA power consumption at varying uplink
transmit power PTX and power consumption models of [8] for 4G.

the number of allocated PRBs and the used MCSs, the cell
frequency band and the Time Division Duplex (TDD) pattern.
Each resulting power measurement is the average of two or
more repetitions. Similar to the LTE measurements in [8] and
NB-IoT and LTE-M measurements in [12], the slope of the
UE power consumption is changing at distinct uplink transmit
power levels, leading to a disproportionately steep rise in
UE power consumption. However, as shown in Fig. 4, the
power consumption of the 5G modems is even less in the
lower transmit power region compared to the LTE smartphones
used in [8]. This behavior might be due to the smartphone
power consumption consisting of non-mobile network related
hardware parts. The newer RM520 modem draws even less
power in the lower transmit power range under 3 dBm than
the RM500 modem. The difference in power consumption of
5G and 4G connections can be partly explained by device-
dependent characteristics at the different utilized frequency
bands (see also Fig. 6a). Additionally, Frequency Divison
Duplex (FDD) is used for 4G in comparison to TDD for 5G. In
the case of 5G NSA, two connections need to be maintained,
leading to a higher power consumption in the lower transmit
power region. We set up the data path to the 5G network part
and thus only increased the 5G uplink transmit power while
keeping the LTE transmit power at a low value similar to in
real NSA networks. As a result, the rise in power consumption
is similar to the 5G SA case. This behavior suggests that 5G
NSA can only be energy efficient compared to LTE when large
amounts of data are transmitted.

As in [8], the non-linear characteristic of the power con-
sumption is approximated by a piece-wise linear function.
However, as shown in Fig. 5, the power consumption is also
approximately linearly increasing with the utilized bandwidth
B of the cell. These device and technology-dependent param-
eters αn, βn and γn of the nth part of N linear functions are
calculated for every device, as defined in Eqn. 2.

PUE =





Pmax, PTX, max ≤ PTX
αNB + βNPTX + δN, γN-1 ≤ PTX < PTX, max

...
α1B + β1PTX + δ1, PTX < γ1

(2)

The maximum possible data rate is linearly dependent on
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Fig. 5. Power consumption at different bandwidths B with a subcarrier
spacing of 30 kHz over the uplink transmit power PTX.

the bandwidth and only logarithmically on the SINR, leading
to higher bandwidths reducing the energy consumption per
bit in the uplink direction. As shown in Fig. 6b, the power
consumption also rises linearly with increased TDD uplink
slots. However, the achievable data rate is also linearly rising
with more slots, compensating for the increased power con-
sumption. Another influencing factor is the frequency band, as
seen in Fig. 6a. For example, the FDD bands N28 and N1 draw
more power compared to the n78 band. Further measurements
have been conducted to rule out the influence of the selected
MCS and the utilized number of PRBs.

As the UE power consumption mainly depends on the
uplink transmit power, its value in the real world is of high
interest. However, many commercial devices like Android
smartphones do not provide this information at the application
level. Thus, the uplink transmit power is predicted using
machine learning. As there are two active links in current 5G
NSA networks, in this work, a model is trained to predict
the higher transmit power, which is the dominant factor. With
the help of a dedicated modem on a suspension railroad,
the transmit power could be directly measured during data
transfers. For simplicity, a Random Forest (RF), as proposed in
[13] for LTE networks, is utilized with a feature set of widely
available passive signals. It is tuned by a random grid search
approach optimizing the overall Root Mean Squared Error
(RMSE) in combination with a ten-times cross-validation with
a 20 % test set. This setup could reach a sufficient resulting test
RMSE of 4 dB. For the uplink data rate, a similar machine-
learning setup is used (see also [14]) trained on UDP uplink
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measurements with a file size of 10 MB. With the help of
the achieved uplink data rate DUL(x, y) at a specific location
(x, y), the best-case power-on-time portion pon of the UE at
a set target uplink data rate Dtarget can be estimated (see
Eqn. 3).

pon = Dtarget/DUL(x, y) (3)

It is assumed that the data path for the data transfer in
current 5G NSA networks is via the 5G part of the mobile
network, and no carrier aggregation is used. In this case,
the power consumption of the data transfer is presumed to
be the same as in 5G SA networks, allowing for a general
estimate of the power consumption characteristics of these
networks. The influence of the frequency band on the power
consumption can be neglected, as all cells operated in the N78
frequency band. The conducted 5G SA power consumption
laboratory measurements are used to derive the modem’s
power consumption PUE based on the utilized transmit power
PTX, bandwidth B and the power-on-time portion pon, as
described in Eqn. 4. It is assumed that the UE is consuming
a fixed power Pidle = 0.2W in between the data transmit
measured during airplane mode.

PUE = (αn ·B + βn · PTX + δn) · pon + Pidle · (1− pon) (4)

With these assumptions, a power consumption map for a set
application can be calculated. In a case study, the UE power
consumption in the Dortmund city area shall be evaluated
based on a high-quality video streaming scenario with an as-
sumed data rate Dtarget of 10 Mbit/s. As shown in Fig. 7, based
on our measurements and models, UE power consumption
varies strongly in the Dortmund city area. While, on average,
battery life in our scenario is above 60 % of the best case
at most locations, the power consumption is over five times
higher in some regions, resulting in a significantly reduced
battery life. In these regions, both the data rate and the transmit
power are predicted to be comparably disadvantageous for the
UE (see Fig. 7). These high power consumption areas seem
to occur more often outside the city center close to suburban
areas and can severely decrease service quality of experience.

VI. CONCLUSION

In this paper, we transferred laboratory power consumption
measurements into real-world user device power consumption
estimations based on a massive data set of mobile network
channel measurements in the Dortmund city area. With the

help of an empirical context-aware power consumption model,
the energy efficiency of UEs can be predicted. The model is
coupled with machine learning to predict needed parameters.
While the high number of influencing factors in the real
world prevents an exact prediction of the power consumption
of user devices, our proposed method reveals areas with a
significantly higher power consumption. By avoiding these
areas, the battery life of various applications can be increased
drastically. It can vary up to five times due to the mobile
network coverage depending on the location.

In the future, we plan to analyze the combination of Mobile
Network Operators (MNOs) and technologies and extend
our power consumption model to more system parameters,
including MNO-dependent scheduling.

ACKNOWLEDGMENT
This work has been supported by the Ministry of Economic Affairs, Industry, Climate
Action and Energy of the state of North Rhine–Westphalia (MWIKE NRW) along with the
Competence Center 5G.NRW under grant number 005–01903–0047, and by the Federal
Ministry of Transport and Digital Infrastructure (BMVI) in the context of the project Virtual
integration of decentralized charging infrastructure in cab stands under the funding
reference 16DKVM006B.

REFERENCES

[1] N. Piovesan, et al., “Machine learning and analytical power consumption
models for 5G base stations,” IEEE Com. Mag., vol. 60, no. 10, 2022.

[2] A. Narayanan et al., “A variegated look at 5G in the wild: Performance,
power, and QoE implications,” in Proc. ACM SIGCOMM, 2021.

[3] “How network adaptations for 5G devices will lead to superior battery
life,” Nokia, Espoo, Finland, Whitepaper, 2021.

[4] P. Jörke and C. Wietfeld, “How green networking may harm your
IoT network: Impact of transmit power reduction at night on NB-IoT
performance,” in Proc. IEEE 7th WF-IoT, New Orleans, LA, USA, 2021.

[5] “Ericsson mobility report,” Ericsson, Report, Jun. 2023.
[6] 3GPP, “NR; Physical layer procedures for control,” 3rd Generation

Partnership Project (3GPP), TS 38.213, 2023.
[7] C. Johnson, 5G New Radio in Bullets, 1st ed. Chris Johnson, 2019.
[8] B. Dusza, C. Ide, L. Cheng, and C. Wietfeld, “CoPoMo: A context-

aware power consumption model for LTE user equipment,” Trans. on
Emerg. Telecommun. Technol., vol. 24, no. 6, 2013.

[9] R. Falkenberg, B. Sliwa, and C. Wietfeld, “Rushing full speed with
LTE-advanced is economical - A power consumption analysis,” in Proc.
IEEE 85th VTC Spring, Sydney, NSW, Australia, 2017.
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