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Abstract—The analysis of the physical layer in the frequency
spectrum is subject to vigorous research in the last couple
of years. From localization tasks to anomaly detection, the
research is starting to incorporate more artificial intelligence-
based solutions. In case of anomaly detection, the looming
problem is that there are many different and unquantifiable
types of anomalous effects. Hence trying to find a model that
predicts anomaly itself is not feasible. Therefore, we propose
an approach of successfully detecting all known signals in a
given signal range, which implicitly leads to finding possible
anomalies. This is done by collecting Power Spectral Density
waterfall diagrams and segmenting them with a Convolutional
Neural Network named U-Net. The results are compared against
a knowledge base of the scanned bandwidth and an informed
decision on the validity of the observed signal is made. We are
able to provide a working concept for the distributed monitoring
and stress test system STING for detecting anomalies in private
5G networks. The system is able to achieve an accuracy up to
90%, while providing a false negative rate of 2.37%. We aim to
supply full coverage of a given industrial workplace, through the
distribution of software defined radios over the STING-system
itself and thus are able to detect anomalies over the complete
industrial facility in the future.

Index Terms—Anomaly Detection, Convolutional Neural Net-
work (CNN), Software Defined Radio (SDR), 5G

I. INTRODUCTION

With the increasing usage of private mobile and tradi-
tional wireless networks in industrial settings [1], detection
of unwanted or malicious activity, such as wrongly tuned,
overlapping networks or accidentally produced signals that
interfere with the used infrastructure, is needed to guarantee
a frictionless work environment. Due to the possible freedom
in deployment, there has to be a flexible form of detection.
While Key Performance Indicators (KPIs) like throughput
and latency can give good insights into a given network
on a higher level, they can not provide identification of the
root cause of potential problems. In contrast, for example a
Software Defined Radio (SDR) can be used to analyze a given
frequency range on the physical layer [2]. Granted that the
SDR is sufficiently sensitive enough, every external anomaly
or a signal disrupting worker can be recorded. Additionally,
different types of communication technologies provide distinct
and recognizable signatures.

The overarching problem is that being able to recognize
every possible anomaly is not practically possible. This leads
to suggesting the inverse approach: If a system is able to detect
every known distinct signal, which are then excluded from
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Fig. 1.  System implementation inside a production setting with present
electromagnetic interference caused by a welding process. A nearby STING
with installed SDR detects the interference and reports the anomaly.
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the detection, all remaining found signals by the system are
expected to be anomalous.

In this paper, we propose an SDR-supported system, which
is able to periodically scan the environment in a production
facility and detect anomalies. This approach is added to
the Spatially distributed Traffic and Interference Generation
(STING) system, as depicted in Fig. 1. STING is a decen-
tralized system enabling technology independent, systematic
network performance testing and monitoring introduced in [3]
and [4]. In our approach, learning to detect a given tech-
nology signature like 5G is accomplished using an image-
based Neural Network structure called U-Net [5]. This CNN
is used to discern patterns within a given matrix, which are in
this case Power Spectral Density (PSD) waterfall diagrams.
However, to achieve comprehensive signal recognition, the
model necessitates exposure to all possible signature that
may appear in a given communication network. Therefore,
an online learning process with live networks is imperative to
generate all potential signals per given type. As a proof of
concept, experiments involving a single worker within a 5G
network were conducted, focusing on a bandwidth of 50 MHz
centered around 3.775 GHz.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, the integration into the
STING-system is presented in Sec. III, as well as the collection
of data, the training of the CNN the and detection workflow.
Afterwards, detailed results are provided and discussed in
Sec. IV before a conclusion is drawn in Sec. V.
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Fig. 2. STING-system with integrated SDR-STING units for data collection
as PSD waterfall diagrams used centralized in Training. Anomaly detection is
performed in the backend with the Ground Truth mask, created from known
system information and a Segmentation produced from the CNN.

II. RELATED WORK

The detection of anomalies has become increasingly impor-
tant in recent years. While an anomaly can appear in many
different ways and research fields, the need of early and reli-
able detection is often the biggest priority for the user. How an
anomaly might manifest is highly dependent on the underlying
type of data that is supplied. The authors in [6] describe their
data as series of multi-modal sensory output. They convert
this data into a spectrogram and utilize a CNN for the feature
extraction and an auto-encoder to translate those into a user
readable output. Several papers have recently been published
on spectrum sensing, which are outlined and compared in
[7]. The combination of so-called cognitive radios and deep
learning is able to dynamically allocate the wireless spectrum.
Therefore, different deep learning strategies are discussed to
provide an overview over the current research in this field.
The use of Machine Learning (ML) in the detection of signals
is steadily increasing, as shown in [8]. The authors use an
SDR-based approach called DeepSweep to sweep over a given
frequency range and are able to recognize and sense signals of
the wireless spectrum. They implement ML in the form of a
CNN to identify signals like 5G or Wi-Fi with a high accuracy
in real-time. [9] introduces an anomaly detection system for
Software-defined Networking (SDN), which combines Secu-
rity Information and Event Management (SIEM) with ML.
They discuss the performance of various ML algorithms and
show that they accurately categorize network traffic to identify
anomalies or dynamically adapt to different scenarios. [10]
presents a recurrent neural network-based method for detecting
radio anomalies, enhancing anomaly detection in complex
radio bands. By using Long Short-Term Memory (LSTM)
networks, it accurately predicts radio signal behavior and ef-
fectively identifies anomalies across different communication

bands. The system’s performance demonstrates its potential
for applications in spectrum monitoring and communications
security. [11] uses an adversarial autoencoder (AAE)-based
anomaly detector for wireless spectrum, achieving over 80%
accuracy in identifying anomalies with a 1% false alarm rate.
While providing real-time analysis of potential anomalies, it is
also able to identify signal characteristics in a semi-supervised
fashion and provides compression of PSD data.

Compared to the mentioned methods for anomaly detection
that use, for example, multi-modal data or methods specialized
for signal processing, our approach utilizes a well-established,
general-purpose model validated in fields such as medicine.
We chose to use real signal data for training and validation to
ensure applicability in real-world environments. Additionally,
our system can be integrated into the distributed monitoring
framework (STING) to ensure comprehensive coverage of
industrial facilities. By comparing segmented results against
a predefined knowledge base, we enhance the reliability of
anomaly detection in private 5G networks. This strategy not
only achieves high accuracy but also ensures robust detection
of anomalies across industrial facilities, providing a flexible
and scalable solution tailored to the needs of modern industrial
settings.

III. ANOMALY DETECTION APPROACH

Our approach uses SDRs to sense wireless signals and
implements deep learning in the from of a CNN to classify 5G
signals similar to [8]. Additionally, we employ post-processing
in order to compare the CNN output with a target status and
report anomalies based on their difference. The underlying
system architecture is shown in Fig. 2. As a prerequisite for
implementing anomaly detection in the STING-system, every
STING unit is required to have an integrated SDR. Due to
the existing workload of each STING, the detection itself is
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Fig. 3. Snapshots of PSD waterfall diagram of the training data, for each
image type. 5G-DC includes a 50 MHz wide 5G active communication
channel at differing center frequencies.
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Fig. 4. Comparison between Ground Truth and Segmentation images

resulting in anomaly detection with two different strategies. An anomaly is
detected if a chosen pixel difference threshold is surpassed.

carried out on the centralized STING Network Companion.
This server is able to analyze the incoming PSD waterfall
diagrams from each STING and report a possible anomaly
via the integrated GUI. Each part of the detection system is
detailed below, starting with the data acquisition.

A. Reference Signal Data Collection

An Ettus USRP B205mini-i was utilized to collect training
and test data. The setup involved an active private 5G net-
work at a carrier frequency of 3.775 GHz and a bandwidth
of S0MHz with one User Equipment (UE) attached. Data
collection occurred during either active communication (5G-
Shared-Channels) or passive signaling channels (5G-Control-
Channels). Samples were collected at a constant distance
between the SDR, cell, and UE. IQ samples with 10,000
values and a sample rate of 50 MHz were collected, resulting
in a bandwidth of 50 MHz and converted into a PSD via Fast
Fourier Transformation (FFT) and collected over 256 ms to
create a waterfall diagram. This was done with a lightweight
custom software created for the mentioned SDR. For each
waterfall diagram, a segmentation mask was generated. A
mask consists of a matrix where each pixel is assigned a
value: 0 for background noise and 1 for the 5G signal. Each
mask is able to be created automatically due to the information
presented by the private network. The center frequency as well
as the bandwidth of the deployed 5G network are known at all
times and can therefore be labeled in a given mask. 2,000 data
pairs were collected with a diverse range of center frequencies
containing active or passive 5G signals, as well as samples
with no signal present, as visible in Fig. 3.

B. Segmentation Training

It was decided to use a CNN following the U-Net struc-
ture [5] because of its great success in medical applications
and proven ability in diverse fields of research. PyTorch
was used for the implementation and the initial learning
rate was set to 0.0005. The ADAM optimizer was used
and the CrossEntropyLoss was selected as loss function. The
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Fig. 5. Sample images of evaluation dataset. One sample without anomaly
and three sinusoid anomalies with different bandwidths.

data collected in subsection III-A is split randomly in an
80/20 distribution for training and validation. Because of the
similarity of background noise and 5G Control-Channels (5G-
CCH) images (Fig. 3), two different models are trained: one
with and one without 5G-CCH (see Fig. 7). Due to the
similarity of the input data, the risk of overfitting increases,
therefore augmentation is introduced to increase the robustness
of the network. The images are randomly cropped and flipped
50% of the time to reduce the change of overfitting. For the
same reason, early stopping is implemented in the form of a
learning rate scheduler named ReduceLROnPlateau in case of
a stagnating learning rate. In subsection I'V-A, the results of
the training are discussed.

C. Anomaly Detection Workflow

When a PSD waterfall diagram is sent to the server, the
images are segmented by the CNN. Additionally, the current
system information (see Fig. 2), namely bandwidth and center
frequency, is gathered and used to create a Ground Truth
mask of where the network should be located in a given
image. The Segmentation is then compared against the Ground
Truth (see Fig. 4). The next step is to decide whether there
is an anomaly present. For this purpose, the following two
comparison strategies are considered:

1) Total: Calculating the percentage of differing pixels over

the full image. Example Fig. 4: In order to detect an
anomaly a pixel difference threshold of 2.5% is needed.
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Fig. 6.  Validation performance of the Segmentation Algorithm over the

number of epochs with 5G-CCH (red) and without 5G-CCH (blue).
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Fig. 7. Comparison of both trained models, over all possible pixel differences
(Red: Model with 5G-CC, Blue: Model without 5G-CC)

2) Slicing: Splitting the image into multiple slices and
calculating the pixel difference for each slice. Example
Fig. 4: For the detection o an anomaly, a pixel difference
threshold of 20% for at least one slice in required.

In the case of Total, an anomaly is detected if the pixel
difference percentage for the image is exceeding a chosen
threshold. For Slicing, every slice is checked for an anomaly,
and as soon as one slice has a pixel difference too high, an
anomaly is reported. This ensures that smaller differences in
pixels are not overshadowed by big areas that do not contain an
anomaly. It has to be noted, that the pixel difference threshold
also needs to be optimized, which is explored in IV-C.

IV. DETECTION PRECISION RESULTS

A test dataset was created for the evaluation, consisting
of 800 images of three different synthetic anomaly types,
each with its own bandwidth and random pattern. These
anomalies are positioned at random frequencies, while the
5G cell remains at the same position in the spectrum for this
test. The SDR collected images at different center frequencies.
Samples of the resulting dataset can be seen in Fig. 5. The
first step is to compare the different trained models with each
other to decide which model is more suitable for the remaining
evaluation. Next, the optimal number of slices for Slicing is
presented and lastly the two post-processing algorithms are
discussed, the optimal pixel difference percentage is shown
and evaluated.

A. Convolutional Neural Network Segmentation Quality

Fig. 6 shows the validation accuracy, calculated as the num-
ber of correct divided pixels by the total count of pixels. The
model without SG-CCH (red) reached 99.94% at epoch 160
and 99.05% at epoch 143 with 5G-CCH (blue). Both models
stopped early due to the implemented minimum learning rate.
To decide which model performs better, a brute force approach
is used over all possible pixel difference percentages with the
complete processing method. Both models start at a relatively
high accuracy, indicating that the training data has a high
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Fig. 8. For the Slicing approach the number of slices has to be optimized

to maximize accuracy, recall and precision.

amount of default labels, in this case background noise without
a present 5G signal. The high amount of background noise in
each evaluation’s images leads to this high initial accuracy.
Additionally, the more inconsistent validation accuracy during
training for the model with SG-CCH suggests that the simi-
larity of background noise and 5G-CCH images, as apparent
in Fig. 3, has a noticeable effect. Still the model, as seen
in Fig. 7, is outperforming the model without 5G-CCH at
every possible pixel difference threshold. This means that the
additional image type helped the network with generalization,
resulting in better performance on the evaluation set. The other
model plateaus at approximately 42% accuracy. This is due to
the number of ’no anomaly” samples in the evaluation dataset.
At a threshold of 40% pixel differences, almost all evaluation
images are getting labeled as "no anomaly”, which is displayed
as the mentioned plateau. Therefore, only the model with
signaling is used in the rest of the evaluation. In the following
section at first the quality of both CNN models on the valida-
tion and evaluation dataset is explored. Then the differences
of the two post-processing algorithms and their optimization
are displayed. Lastly the detection results are discussed.

B. Post-processing

Two different types of post-processing procedures are ex-
plored. The first procedure focuses on full pixel error, which
measures the percentage of correctly masked pixels over the
full images. The second procedure is similar to the first
one, but it splits the analysis into vertical slices, facilitating
a more differentiated analysis. Optimization was performed
initially on accuracy and then on recall. Accuracy denotes
the number of correct predictions, while recall represents the
number of true positives out of all positive predictions, thereby
minimizing false negatives. The slicing approach required
optimization for the number of slices, which was done through
brute force as seen in Fig. 8. For this test setup the optimal
number of slices is 64. The drop in performance at 256
slices is because each individual slice is getting too thin for a
consistent analysis. However, it is important to note that this
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optimal value may vary with different types of anomalies in
a real environment. The optimized number of slices results in
a bandwidth per slice of approximately half of the smallest
anomaly band (1.25 MHz) in Fig. 5. Furthermore, there is no
positive impact in making even smaller slices, as seen in Fig. 8.
To ensure optimal performance for each algorithms, the pixel
difference percentage needs to be optimized as well.

C. Evaluation

Fig. 9 presents an analysis of all possible thresholds for
both methods and their accuracy, recall and precision values.
Intuitively, the accuracy is higher at smaller thresholds for
Total due to large portions of the masks being identical. This
results in a high peak at the beginning, due to the high number
of false positives, which can be seen in the relatively low
precision value. As the threshold is increasing, the number of
false negatives is rising steadily, which leads to a decrease
in overall accuracy compared to the slicing approach. The
precision converges to 1 due to the fact, that after a threshold
of approximately 40%, no test case is getting labeled as
”anomaly”, which results in no false and true positives.

The 64-slicing on the other hand starts to overtake at
approximately 25% of differing pixels. The jump in accuracy
and precision is due to the “no anomaly” data, which have a
mean pixel difference percentage of under 25%. This leads to
a high number of data being converted from false positive to
true negative. Slicing consistently outperforms Total after that
threshold and the accuracy is very consistent. This implies that
even a not perfectly optimized pixel difference threshold can
lead to acceptable detection result using this approach. For
the tested setup, when optimizing for accuracy, the optimal
threshold for slicing was determined to be 73.9%, resulting in
a 90% accuracy, 95.96% recall and precision of 88.04% with
a false negative rate of 2.37%. This system therefore allows
to detect a wide range of potentially malicious activities and
therefore enables operators to initiate counter measures.

V. CONCLUSION

This paper introduces a highly precise anomaly detection
methodology tailored for the STING-system. Our approach
enables continuous monitoring for potential anomalous signals
while incorporating a degree of localization capability through
the utilization of SDRs. To achieve this, a CNN structure
named U-Net is employed, which proficiently analyzes PSD
waterfall diagrams and categorizes each pixel as either per-
taining to 5G signals or background noise. Leveraging key
system parameters such as bandwidth and center frequency of
the private 5G network, a robust detection accuracy of approxi-
mately 90%, with only 2.37% occurrences of false negatives is
demonstrated in a controlled environment featuring one active
5G UE and one signal generator.

The focus in future works is to add additional network types
to the training data, as well as testing a wider range of anoma-
lies in a real-world environment. Additionally the case that an
anomaly is entirely within the 5G signal requires further inves-
tigation. The ultimate objective is to develop an anomaly de-
tection system with real-life localization capabilities, enabling
precise identification of the source of anomalous signals.
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