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Abstract—In terms of flexibility and scalability, network slicing
enables the realization of contradicting services on public mobile
radio infrastructure – providing robustness and reliability for
critical services. Combined with the new paradigm of Open
RAN, network operators can utilize Commercial of-the-Shelf
(COTS) hardware to build a fully softwarized radio network
with sophisticated resource management. Using xApps built on
top of a near Real-Time RAN Intelligent Controller (RIC)
operating as a virtual entry point, the allocation of resources
can be optimized to provide low latency and reliability to critical
services while yielding high spectral efficiency. In this paper, we
showcase the capability of our developed SAMUS xApp relying on
Machine Learning (ML) methods in a real-world experimental
setup assessed by an inverted pendulum operated with Model
Predictive Control (MPC). Compared to traditional scheduling,
we reduce the mean uplink one-way delay by 65% using our
SAMUS xApp, while simultaneously increasing spectral efficiency
by 61% compared to static proactive allocation, maintaining
similar control performance.

I. INTRODUCTION

Future energy networks require robust communication in-
frastructures, however, dedicated infrastructure tends to be
cost-intensive. With the current fifth generation of mobile
radio networks (5G), the key technology of network slicing
enables reliable data transmission over existing public com-
munication infrastructure. Here, dedicated resources can be
allocated for critical services, e.g., smart grid management
and microgrids. In contrast to the conventional best-effort-
based scheduling, these resources are only available to the
devices within a specific network slice, further enhancing pre-
vious Quality of Service (QoS)-based approaches and enable
virtually isolated communication services. The 3rd Generation
Partnership Project (3GPP) defines two procedures to allow
the allocation of resources without the need for scheduling
requests, drastically decreasing the experienced latency for
Ultra-Reliable Low Latency Communications (URLLC) de-
vices. The first one is to allocate resources using configured
grants that are communicated to the User Equipment (UE) via
Radio Resource Control (RRC) signaling and focus on strictly
recurrent transmissions over longer time periods. However, the
second approach, proactive grants, enables more flexibility by
allocating resources proactively, i.e., without the need to send

a scheduling request. Using Downlink Control Information
(DCI), the base station can also announce specific reserved re-
sources towards the UE without the device initially requesting
them. Thus, this approach opens the possibility of improving
the scheduling by means of machine learning or heuristics to
optimize both latency and overall network performance by pre-
dicting the resource demand for low-latency communications
as well as other critical services. In our previous work [1], we
examined the impact of the Open RAN concept’s introduced
additional interfaces in terms of latency, which showed to
be relatively small compared to the total latency. This work
extends the framework by considering a networked MPC as a
latency-critical application that relies on robust communication
for optimal performance. Co-designing the communication
system with the control system is another aspect where channel
disturbance plays a vital role. As delays induced by wireless
communication have a significant impact on the performance
of the control algorithm, the underlying communication system
needs to address the expected latency beforehand. Within this
work, we present a functional experimental testbed, providing
latency guarantees for mission-critical control via a prioritized
network slice using proactive scheduling based on Open RAN
specifications for an inverted pendulum control benchmark.
Furthermore, we examine the trade-off between spectral effi-
ciency and control quality of an MPC controller evaluating
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Fig. 1: Overview of the demonstrator system for reliable, networked
Model Predictive Control (MPC) applications using an inverted pen-
dulum as control benchmark. The control data exchange is performed
via a fully softwarized, open-source wireless communication link
with Open Radio Access Network (RAN) backend.



 @InProceedings{Overbeck2024a,	Author = {Dennis Overbeck and Niklas A. Wagner and Robin Wiebusch and Jens Püttschneider and Timm Faulwasser and Christian Wietfeld},	Title = {Data-Driven Proactive Uplink Slicing enabling Real-Time Control within an Open RAN Testbed},	Booktitle = {IEEE INFOCOM WKSHPS: The 11th International Workshop on Computer and Networking Experimental Research using Testbeds (INFOCOM CNERT 2024)},	Address = {Vancouver, Canada},	Month = {5},	Year = {2024}} 



different resource allocation schemes. The sections of this
work are structured as follows: We provide a brief overview
of related work in Sec. II, then describe the key enablers for
our demo testbed in Sec. III, providing an overview of the
technologies employed. Subsequently, Sec. IV describes the
testbed leveraged for the use case and outlines the key results.
Finally, Sec. V summarizes our findings.

II. RELATED WORK

The literature relevant to this paper, sharing common ground
with our research, focuses mainly on the preliminary work
on Machine Learning (ML)-based network slicing, and thus,
resource allocation as well as its application in the form of
xApps in the Open RAN context. Furthermore, works on
the use-case-related MPC and the idea of communication
control co-design are considered. Within the survey of [2], the
remaining challenges and current state of ML-based resource
management for network slicing within 5G and beyond net-
works are reviewed, highlighting their importance for future
networks. Therefore, several works consider ML as a key
enabler for efficient resource orchestration in the wireless
domain, as well as the capabilities of 5G to reduce latency.
Fast uplink grants for Massive Machine Type Communication
(mMTC) environments enable to significantly decrease the
impact of scheduling requests on the network [3]. The work
shows how the combination of ML and proactive resource al-
location can lead to decreased experienced latency in schedul-
ing for the devices within the network. The authors of [4]
propose an orchestration of resources within a sliced network
by multiplexing URLLC and Enhanced Mobile Broadband
(eMBB) services in an optimization problem, achieving lower
packet blocking probability for bursty URLLC traffic. The
achieved results were obtained within a simulation. Focus-
ing on the optimization of resource allocation for URLLC
services in coexistence to eMBB transmissions, the authors
of [5] propose an optimization-aided Deep Reinforcement
Learning (DRL) based framework. Here, mini-slots (or short
Transmission Time Intervals (TTIs)) are used in combina-
tion with preemptive scheduling within a simulation-based
evaluation to show promising results in terms of fulfilling
URLLC requirements as well as reliability for eMBB services.
Age of Information (AoI) for control algorithms is of crucial
importance for networked control algorithms, and thus, the co-
design of communication of control is indispensable for high
control performance. The work of [6] presents a framework for
determining the quality of control based on a given application.
Specifically, the packet error rate is highlighted to impact
the applications, and thus, adaptive resource allocation is
proposed as key to preventing consecutive packet losses. The
drive towards open interfaces pioneered by the Open RAN
concept is explored in several works, including the work of
[7], which showcases an xApp implementing heuristic control
for lowering the experienced latency for Virtual Reality (VR)
streams. The heuristic is based on the detected frames per
second transmitted by the UE and adjusts the allocation of
resource block groups accordingly. Furthermore, the authors

of [8] propose an orchestration framework based on O-RAN
to choose and assign specific trained ML models to different
network slices depending on the incentivized Key Performance
Indicators (KPIs). In our work, we show a tangible demo
use case that demonstrates the importance of low latency
for critical control services, while considering MPC including
delay compensation, further increasing control quality.

III. ML-DRIVEN PROACTIVE NETWORK SLICING
BASED ON OPEN INTERFACES

This section describes the utilized approach to proactive
uplink resource management based on ML to provide low
latency for the critical communications.
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Fig. 2: Depiction of the underlying framework and communication
streams for data-driven proactive scheduling by our SAMUS xApp.

A. Proactive Resource Management with OpenRAN

In our previous work [1], we presented our Slice-Aware
Machine Learning-based Ultra-Reliable Scheduling (SAMUS)
[9] approach within an open framework for predictive resource
allocation. Embedded in the Open RAN architecture, and the
E2 agent implementation provided by [10], we enabled the
near-Real-Time (RT) RAN Intelligent Controller (RIC) direct
access to the distribution of resources via a custom scheduler,
providing an entry point for sophisticated scheduling opera-
tions using ML methods. The functionalities built on top of the
RIC are called xApps, taking advantage of the open interfaces
provided by the O-RAN standard. The key elements of this
innovation relevant for this work are depicted in Fig. 2. Here,
the standardized E2 interface is utilized to provide predicted
MAC payload sizes to the scheduler every 20 ms.



The transmission in the opposite direction is realized using
a Representational State Transfer (REST) interface towards the
prediction server, which is part of the developed xApp. The
inverted pendulums are connected to the UEs incorporating
the state measurements, which are then transmitted via air
interface towards the base station, inheriting the MPC con-
troller. Within the base station, the received transmissions are
then sent via the REST interface to the pre-trained prediction
model. The predicted TTIs are then communicated back to
the scheduler via E2 Control Messages, which are then used to
proactively allocate radio resources based on these predictions.

B. Real-Time Prediction of Payloads using Machine Learning

The standard approach for UEs to receive resource allo-
cations within mobile radio networks relies on the concept
of actively requesting them via scheduling requests. These
inquiries are sent via the Physical Uplink Control Channel
(PUCCH) within specified time slots, the Scheduling Request
Occasions (SROs), which are communicated by the base
station within the DCI packet for each specific UE uniquely
to avoid collisions. When packets need to be transmitted,
therefore, a wait time is induced based on the next available
SRO, followed by the delay of the air interface for the
Scheduling Request (SR) to be received by the base station
as well as the wait times for the allocated resource for the
actual transmission of the data.

The whole process results in a significant delay experienced
by the UE, even with small SRO periodicity, and is therefore
not suitable for highly critical, latency-sensitive services such
as defined for URLLC with requirements below 5 ms. The cur-
rent 5G standard defines novel methods of assigning resources
without requesting them in the first place and, therefore, gives
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Fig. 3: Overview of the different possible scheduling schemes as
standardized by the 3GPP from the UE’s perspective.

TABLE I: SAMUS Training Parameter Settings

Learning Rate 10−3

Layer Structure LSTM (vanilla, 64 Units)
Dense Layer (Activation: linear)

Batch Size 4
Epochs 72

Loss MSE
Optimizer ADAM

the opportunity to reduce the previously enumerated wait times
drastically. Besides the fairly static Configured Grants (CGs),
our work concentrates on the more dynamically available
Proactive Grants (PGs), which can be used to proactively
communicate available resource blocks to the UE via standard
DCI packets. Here, the delay from requesting radio resources
is virtually none; however, prediction methods, e.g., using ML,
are needed to provide them in a spectrally efficient manner.
In Fig. 3, the scheduling schemes under investigation are
depicted. A static allocation of proactive grants, as shown in
the center, fulfills the requirements of reducing latency to a
minimum; however, at the cost of limiting available resources
and thus bandwidth for other services within the network.
Therefore, the idea to utilize ML methods, as shown on the
left-hand side, aims to reduce the waste of resources by learn-
ing the pattern of unique UEs and assigning radio resources
based on previous transmissions. For this, we employ a Long
Short-Term Memory (LSTM) model trained offline for our use
case of an MPC-operated pendulum.

The parameters used for training the model are listed
in Tab. I; the framework used for training is Keras with
TensorFlow backend. We use a pre-recorded packet trace of
a single pendulum controller over a timespan of 875 s for
training and validation of the model. The available dataset
is split into 2

3 training and 1
3 validation subsets while test

data is later generated live. Training of the model results in
60% exact matches of the payload sizes per timeslot in the
validation subset. For the live prediction of estimated payloads,
we employ a lookback size of 100 TTIs as well as a prediction
horizon of 100 TTIs. The Medium Access Control (MAC)
layer payload sizes per time slot serve as input for the LSTM
model. The precise amount of assigned resources is critical
since over-allocation results in decreased spectral efficiency.
In contrast, insufficient assignment of resources leads to the
necessity of reactively scheduling packets and, thus, increasing
latency. Therefore, we rely on peak prediction, i.e., we apply
a noise gate and fix the allocations to a defined maximum to
provide enough resources. Several challenges arise regarding
the real-time prediction on millisecond timescales. For the UE
to utilize the assigned grants, it is crucial to have those grants
available within the expected time slot, otherwise the device
will request resources using SRs. As the predictions performed
by the model are based on the arrival of payloads at the
base station, this leads to unexpected additional delays and,
therefore, a propagation of deviation between the predicted



TTI and the ground truth of TTI, where the packet should
have been scheduled. To counter this problem, we introduce
a synchronization phase to evaluate the ground truth timing
and provide the model with the information to correct the
predicted TTIs towards it. Additionally, we use a broadening
of the predicted timestep to compensate for mispredictions.
We define the periodicity of evaluation phases τ = 2 s, the
duration of the evaluation phases ξ = 100ms, and the timely
broadening of predictions as β = 7ms at a data inter-arrival
time of σ = 20ms. Employing the evaluation phase, in
comparison to statically allocating resources, results in the
spectral efficiency given by the equation

#AllocatedPRBs[%] =
ξ

τ
+

(
1− ξ

τ

)
β

σ
.

Therefore, the theoretical relative resource efficiency gain by
employing the data-driven scheduling method is 66.75%.

C. Model Predictive Control

MPC is an optimization-based control method that calcu-
lates feedback actions based on the repeated solution of an
open-loop Optimal Control Problem (OCP) [11]. At each sam-
pling time, the state of the plant is measured, and an optimal
open-loop prediction of states and inputs is calculated over a
finite horizon based on the minimization of a cost functional
while satisfying the system dynamics and constraints. Then,
the first part of this trajectory is implemented until the next
sampling time.

Here, we consider the control task of stabilizing an in-
verted Furuta-Pendulum in the upper equilibrium position.
The system is a fourth-order system with state vector x =
(θ, α, θ̇, α̇)⊤ ∈ R4, where θ is the rotary arm angle with
the angular velocity θ̇ and α represents the pendulum arm
angle with velocity α̇. The control input u ∈ [−7.5, 7.5] is the
voltage applied to the motor. For the system model, we refer to
[12]. The continuous time dynamics ẋ = f(x, u), x(0) = x0

are discretized using a fourth-order Runge-Kutta discretization
scheme with a fixed stepsize of 20 ms which gives xk+1 =
fd(xk, uk), x0 = x0.

Within the control loop, the plant measures its states x(tk)
at time tk and sends it to the controller in the uplink chan-
nel. There, the varying uplink delay τUL(tk) is determined.
The combined calculation time and downlink delay τDL is
assumed to be constant and measured before the experiment
and measured in a preparatory step. With this assumption, the
total delay τ(tk) = τUL(tk)+τDL is available at the controller
and can be compensated by forward integration of the plant
model

x̂(tk + τ(tk)) = x(tk) +

∫ tk+τ(tk)

tk

f(x(t), u(t))dt.

Then, the discrete-time OCP is solved for the delay-
compensated state

min
ui,xi

N−1∑
k=0

(
x⊤
k Qxk +Ru2

k

)
+ x⊤

NPxN (1a)

subject to xk+1 = fd(xk, uk), ∀k ∈ {0, ..., N − 1} (1b)
x0 = x̂(tk + τ(tk)) (1c)
− 7.5 ≤ uk ≤ 7.5 ∀k ∈ {0, ..., N − 1} (1d)
− 1π/2 ≤ θk ≤ 1π/2 ∀k ∈ {0, ..., N} . (1e)

The OCP hyperparameters are prediction horizon N = 100,
state cost matrix Q = diag(5, 2, 0.1, 0.01), input penalty R =
1. The terminal penalty P is determined via the solution of the
discrete algebraic Riccati equation for the linearized dynamics
at the upper equilibrium point. The OCP is implemented in
Acados [13]. After the OCP is solved, the controller sends
the first element of the input trajectory to the plant, where it
is applied when it has been received at time tk + τ(tk), i.e.,
u(tk + τ(tk)) = u0.

As a metric for comparing control performance over T
timesteps, we employ the closed-loop cost

JCL =

T∑
k=0

x(tk)
⊤Qx(tk) +Ru(tk)

2. (2)

IV. EXPERIMENTAL SETUP AND RESULTS

In the following section, we discuss the evaluation setup
and results for the latency-critical control.

A. Evaluation Scenario and Experimental Setup

The scenario for the following experimental evaluation
is constructed to assess the achievable control performance
in an agile control task driven by an MPC controller at
the mobile edge via our SAMUS-enabled base station. We
consider Quanser Servo 2 inverted pendulums [12] as plants
to be controlled independently. The regulation of the pen-
dulums to their unstable equilibria is a common benchmark
problem facing similar challenges as, e.g., applications in
power systems. The computation platform for Evolved Packet
Core (EPC), Evolved Node B (eNB) based on srsRAN 21.10
[14], near-RT RIC with xApp and the prediction model is
a shared server (AMD Ryzen 5900X, 32 GB RAM, Ubuntu
20.04). On UE side, one compact platform is employed each
(AMD Ryzen 7735U, 32 GB RAM, Ubuntu 22.04). The radio
side is operated by USRP B210 Software-Defined Radios
(SDRs). For reproducible Radio Frequency (RF) conditions,
we emulate a realistic channel based on the 3GPP EPA model
[15] using a Keysight Propsim F64 radio channel emulator.
The eNB is set to a bandwidth of 3 MHz, 15 Physical Resource
Blocks (PRBs) and operation is performed at the campus
frequency of 3.75 GHz in Frequency Division Duplex (FDD)
mode. To enable measurements of one-way delay metrics, all
devices are synchronized with a local chrony instance using
the Network Time Protocol (NTP). Packet transmission times
from the pendulum and reception times at the controller are
captured by tshark traces.
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Fig. 4: Real-world experimental setup, comprised of two latency critical UEs serving one inverted pendulum each and the base station
including near-RT RIC and SAMUS xApp.

B. Results of Application-based Evaluation

From the communication perspective, we compare the re-
sults of our employed scheduling algorithms in terms of
experienced one-way delay for the connected devices as well
as the spectral efficiency, i.e., the resources used by the UEs
to achieve the latency. Furthermore, we discuss the impact of
this induced delay in the communication link on the control
performance of the MPC (1). We define one-way delay as
the time a packet requires to be received on the Packet Data
Network Gateway (P-GW) of the EPC after being sent out
from the UE application. As a control baseline, we evaluate
the closed-loop cost (2) of the MPC based on 25 test runs in a
cabled ethernet setup. For the remaining measurements, the ex-
periments were performed for an equal amount of n = 25 test
runs, which lasted t = 30 s each, resulting in an average of ap-
proximately 35, 000 data points per pendulum per scheduling
algorithm regarding latency and resource allocation. The Fig.
5 is structured to provide emphasis on the relations between
delay (top), spectral efficiency (center), and closed-loop cost
(bottom). On the left-hand side, the results for the traditional,
reactive scheduling are depicted. Following a static allocation
leveraging proactive grants to minimize latency in the center,
our proposed modification using predictions is highlighted on
the right-hand side of the figure. Starting at the top of Fig.
5, the measured one-way delay is depicted, split for the two
deployed UEs, where both act as a communication gateway
for the state transmission towards the controller residing at the
core network. With the reactive scheduling approach, depicted
on the left-hand side, we achieve a mean latency of 14.16 ms
for both UEs with outliers reaching up to 69.59 ms for UE2.
However, as shown in the center of the figure, the allocated
resources remain low since they are only given to the UE
when needed, resulting in virtually no waste of resources.

Nevertheless, the closed-loop costs increase due to the high
latency, as depicted at the bottom of the figure, indicating
deteriorated control performance. Several retries in swinging
up the pendulum induce high closed-loop cost according to
(2). The baseline regarding the experienced delay via the demo
testbed is given by statically allocating resources every TTI.
By doing so, we achieve a mean delay of as low as 4.37 ms as
depicted in the center row of Fig. 5. This behavior is mirrored
by the closed-loop costs, as the state of the plant is transmitted
without significant delays, enabling precise real-time control.
However, since the resources are blocked every ms, the spectral
efficiency decreases noticeably as they are uniquely assigned
to the UEs. By employing our proposed SAMUS xApp (Fig. 5,
right-hand side), the best of both worlds can be achieved with
only minor outliers in latency due to prediction errors outside
the broadening of the time step. The mean delay decreases
to 4.9 ms, while the spectral efficiency increases by 60,70%
compared to the proactive static allocation of resources. The
performance achieved by the MPC for the SAMUS xApp is
close to the level of static allocation.

V. CONCLUSION AND OUTLOOK

This paper demonstrated the control of a wirelessly net-
worked pendulum with an MPC controller located at the
network edge. Employing our SAMUS xApp, we were able
to achieve 37% decreased closed-loop control cost compared
to traditional scheduling by improving the resource allocation
leveraging an LSTM model, predicting the precise timing
of incoming packets. With focus on the achieved latency
reduction, we were able to achieve a 65% decrease in mean
uplink delay. While showing persistent control performance
compared to the static proactive allocation of resources, our
proposed improvements reach higher spectral efficiency, how-
ever, increase resource usage by 88% compared to traditional
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for the discussed scheduling approaches.

reactive scheduling, emphasizing the trade-off needed to pro-
vide stable low latency. Moreover, first investigations show
that reduced Signal-to-Noise Ratio (SNR) heavily impacts the
performance of the pendulum control. Future work, therefore,
concentrates on considering channel conditions when allo-
cating resources, e.g., in cell edge and mobility scenarios.
Furthermore, spectral efficiency is aimed to be improved
by optimizing scheduling decisions regarding latency limits
for specific use cases in scaled scenarios. In parallel, event-
triggered model predictive control can be utilized to reduce
communication effort and thus increase energy as well as
spectral efficiency.
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[6] L. Scheuvens, T. Hößler, A. N. Barreto, and G. P. Fettweis, “Wire-
less Control Communications Co-Design via Application-Adaptive
Resource Management,” in 2019 IEEE 2nd 5G World Forum (5GWF),
2019, pp. 298–303.

[7] A. Casparsen, B. Soret, J. J. Nielsen, and P. Popovski, “Near Real-
Time Data-Driven Control of Virtual Reality Traffic in Open Radio
Access Network,” in Globecom 2023 - IEEE International Conference
on Communications, 2024.

[8] S. D’Oro, L. Bonati, M. Polese, and T. Melodia, “OrchestRAN:
Orchestrating Network Intelligence in the Open RAN,” IEEE Trans-
actions on Mobile Computing, pp. 1–16, 2023.

[9] C. Bektas, D. Overbeck, and C. Wietfeld, “SAMUS: Slice-Aware
Machine Learning-based Ultra-Reliable Scheduling,” in ICC 2021 -
IEEE International Conference on Communications, 2021, pp. 1–6.

[10] D. Johnson, D. Maas, and J. Van Der Merwe, “NexRAN: Closed-Loop
RAN Slicing in POWDER -A Top-to-Bottom Open-Source Open-RAN
Use Case,” in Proceedings of the 15th ACM Workshop on Wireless
Network Testbeds, Experimental Evaluation & CHaracterization, New
Orleans, LA, USA: ACM, 2021, pp. 17–23.

[11] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[12] J. Apkarian and M. Levis. “Qube-Servo 2 Experiment for Mat-
lab/Simulink Users: Instructor Workbook.” (2016), [Online]. Available:
https://www.quanser.com/products/qube-servo-2/.

[13] R. Verschueren, G. Frison, et al., “Towards a modular software package
for embedded optimization,” in Proceedings of the IFAC Conference
on Nonlinear Model Predictive Control (NMPC), 2018.

[14] I. Gomez-Miguelez, A. Garcia-Saavedra, et al., “srsLTE: an open-
source platform for LTE evolution and experimentation,” Oct. 2016,
pp. 25–32.

[15] 3GPP, “E-UTRA; Relay radio transmission and reception,” 3rd Gener-
ation Partnership Project (3GPP), Technical Specification (TS) 36.116,
Apr. 2022, Version 17.0.0.

https://www.quanser.com/products/qube-servo-2/

	Introduction
	Related Work
	ML-driven Proactive Network Slicingbased on Open Interfaces
	Proactive Resource Management with OpenRAN
	Real-Time Prediction of Payloads using Machine Learning
	Model Predictive Control

	Experimental Setup and Results
	Evaluation Scenario and Experimental Setup
	Results of Application-based Evaluation

	Conclusion and Outlook

