
Machine Learning-aided Sensing in Private
mmWave Networks for Industrial Applications
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Abstract—Integrated sensing and communication (ISAC) is set to
become crucial in future wireless networks as it enables enhanced
communication performance while simultaneously providing
ambient sensing services to verticals. This is expected to be par-
ticularly important in industrial environments, where real-time
detection and classification are vital to improving automation
efficiency and maintaining safety. This paper showcases the
wireless channel of distributed connected devices as a privacy-
preserving sensor characteristically affected by ambient mobility
of automated guided vehicles (AGVs) and humans, thus enabling
6G edge intelligence-based sensing services. We propose the
hybrid machine learning (ML) approach Integrated ML-aided
mmWave Radio Sensing (IMMERSE), combining data, context,
and knowledge to realize passage detection, user classification,
and movement direction estimation. We validate IMMERSE
using real-world received power traces from our measurements
with a non-standalone millimeter-wave (mmWave) network and
feature extraction-enabled lightweight ML. For user detection
and classification, we observe an accuracy of up to 100 %,
which is superior to leveraging sub-6 GHz anchor band channel
state information (CSI). By aggregating multiple radio links, we
achieve a movement direction estimation with 97.7 % accuracy.

Index Terms—6G Integrated Sensing and Communications,
Industrial Private Networks, Millimeter-wave, Edge Intelligence,
User Classification, Machine Learning.

I. INTRODUCTION

Upcoming 6G networks promise to revolutionize wireless
networks by improving communication throughput and
latency as well as seamless and synergistic integration
within versatile application scenarios. The pivotal approaches
identified by academia and industry are the integrated
sensing and communication (ISAC) and edge intelligence
(EI) paradigms, which enable novel use cases for verticals,
such as traffic monitoring, pedestrian detection, and motion
direction sensing [1]. In this work’s context, 6G becomes the
backbone of future digital economies by enabling industry
automation by private network deployments.

By integrating sensing functionalities, ISAC changes how
the operator employs mobile radio networks, particularly those
operating at mmWave frequencies. For instance, ISAC can
empower 6G systems to become perceptive networks with
enhanced situational awareness, e.g., helping to improve the
overall communication performance by improved beam man-
agement [2]. Moreover, the gained context information can be
leveraged in automated industry facilities to track and orches-
trate automated guided vehicles (AGVs). It additionally facil-
itates an autonomous and privacy-preserving detection of hu-
man workers, helping avoid dangerous collisions with AGVs.
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Fig. 1. Future 6G networks will be part of industrial value chains. For exam-
ple, novel sensing features and edge intelligence enable factory automation.

Fig. 1 depicts these industrial use cases of 6G ISAC and the
proposed solution approach. Following the radio fingerprinting
principle of its dedicated predecessor system deployment for
road traffic detection and classification [3], a base station
(BS) continuously monitors channel state information (CSI)
metrics of connected stationary and mobile users. Whenever
AGVs or pedestrians traverse, they induce characteristic
attenuation patterns to the radio channels, exploitable for
safety-critical in-factory applications requiring detection and
classification of different users. Moreover, by aggregating CSI
of distributed user equipment (UE) links, the network can
estimate the specific trajectory of the users, yielding a synergy
of sensing and communication. In future industry network
deployments, these tasks are expected to be performed by
state-of-the-art ML techniques at the edge of the network.
Our key contributions are summarized as follows:
• We conduct extensive indoor measurements of a cellular

mmWave system’s CSI traces for various mobile users
utilizing distributed commercial UEs. This work showcases
the suitability of spatiotemporal received signal strength
power (RSRP) traces for an ML-enabled industry shop floor
automation.

• Our solution approach, Integrated ML-aided mmWave
Radio Sensing (IMMERSE), implements an EI-centric
process, incorporating efficient feature extraction and
selection, and compares the classification performances of
lightweight and modern ML models.

• We provide a sensing performance analysis for (i) user
classification and (ii) passage direction estimation,
comparing mmWave and anchor band CSI.
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Fig. 2. Solution approach for 6G edge intelligence-based traffic sensing on shop floors using CSI from private mmWave radio access network (RAN).

• We release the CSI measurement data, fostering researchers
to evaluate novel radio-based sensing methods for future
6G networks [17].

The rest of this manuscript is structured as follows. After
discussing related work on 6G sensing in Sec. II, Sec. III
describes our measurement methodology and the developed
solution approach IMMERSE. We then evaluate the approach’s
performance for user classification and mobility direction
estimation in Sec. IV. Last, Sec. V concludes with a summary
of this work and a brief outlook on future work.

II. RELATED WORKS

The addition of sensing services to 6G has been initiated
by extended positioning service capabilities in 5G using
power, time, and angle channel parameters [4]. Moving
towards 6G, radar-like sensing is expected to provide high-
quality data for various applications [5]. The ongoing Wi-Fi
sensing standardization activities have set similar goals [6].
Both wireless approaches agree that mmWave carriers in
the frequency range 2 (FR2) band are more suitable than
sub-6 GHz carriers (frequency range 1 (FR1)). Due to the
available broad bandwidth and adopted beamforming antenna
arrays, FR2 allows the realization of high spatiotemporal
sensing resolution and reduced clutter.

The acquired sensing data allows for radio access technol-
ogy (RAT)-internal or -external use helping to improve the
communication performance, e. g., by proactively switching
antenna beams to a reconfigurable intelligent surface (RIS)-
aided non-line-of-sight (NLOS) path if the line-of-sight (LOS)
path is obstructed. Among others, the sensing information
enables a situation-aware increase of the transmit power,
selecting robust modulation and coding schemes (MCSs) or
initiating a handover. These measures reduce a system’s com-
munication overhead while optimizing performance [2, 7, 8].

In the second use case, the cellular network transforms
into a perceptive environment sensor that may gather its
environment, allowing it to localize mobile users (e. g., AGVs,
humans) and even detect their gestures without needing them

to be connected. Whereas there is undoubtedly a high potential
for radar-based sensing, seamless integration is a challeng-
ing multidisciplinary task for the coming years toward 6G.
Moreover, recent research has investigated radio-native sensing
approaches primarily based on different radio channel metrics.
Advantages include, for example, reduced sensing overhead,
less complexity and costs, and native privacy [3, 9]. Multiple
promising studies leverage CSI time series for an ML-aided
prediction of future mmWave link blockages to trigger RAT-
internal performance optimization [2, 7, 10–12]. Otherwise,
we have recently demonstrated that mmWave channel data,
provided by the DeepSense dataset [2], is apt for being
exploited for RAT-external services in the scope of future
intelligent transportation systems (ITSs). Such sensing data
may empower distributed road traffic monitoring, including
counting and classifying different road users, e. g., humans
and vehicles, and flow direction estimation [13].

Against this background, this work moves from a channel
sounder-based approach with CSI available for all antenna
beam configurations to a commercial mmWave-based cellular
network deployment with multiple connected commercial off-
the-shelf (COTS) UEs. Our motivation is to assess the potential
of private cellular networks as wireless sensors for verticals. In
this work, we assume an indoor industry shop floor scenario,
facilitating factory automation and improving worker safety
by monitoring human and machine mobility in a privacy-
preserving manner without a dedicated system. Additional
points of interest include comparing mmWave (serving cell)
and sub-6 GHz (anchor cell) sensing performances [14] and
investigating multilink CSI-based user classification [15].

III. MEASUREMENTS AND IMMERSE APPROACH

This section presents this work’s methodology, includ-
ing our hybrid ML solution approach, Integrated ML-aided
mmWave Radio Sensing (IMMERSE), which combines real-
world CSI data and environment knowledge for industrial
sensing applications, cf. Fig. 2. First, Sec. III-A introduces
the indoor environment and cellular network setup for gath-



TABLE I. MMWAVE NETWORK DEPLOYMENT SCENARIO DETAILS [16].

Parameter Description/Value
B

S

mmWave Radio Unit Ericsson AIR 1281
Frequency Band 5G NR band n257 (26.7 GHz to 27.5 GHz)
TDD Pattern DDSU, 11:3:0
Max. Transmit Power 20 dBm / 100 mW (EIRP)
Anchor Cell LTE band 7 (FDD) with 20 MHz bandwidth

U
E

Device Model Quectel 5GDM01EK + RG530F-EU
Modem and Antennas Qualcomm SDX65, RA530T + 4x QTM547
Power Class Class 3 (max. 23 dBm / 200 mW)
Capabilities 2×2 MIMO in FR2, 4×4 in FR1
Mounting Heights 3.25 m (BS), 1.15 m (UEs A,B,C)
2D Distances BS-UE: 6.75 m (A), 6.35 m (B), 6.60 m (C)

UE-UE: 1.80 m (A-B), 1.35 m (B-C)

TABLE II. OVERVIEW OF MEASUREMENT DATA. AVAILABLE AT [17].

Parameter Description/Value
Sensing Links 3, i.e., BS to UEs A,B,C
CSI Measurements RSRP (passive metric) of mmWave and anchor cells
Time Resolution Up to 1.5 ms using modem AT-commands
Traffic Lanes 2, each 0.6 m wide and approx. 7.0 m long

Track #1 closer to UEs than Track #2
Passage Directions Bidirectional tracks (Dir. A → C, Dir. C → A)
Road Users AGV A.......

.........................................................

....: 0.55m× 0.70m× 1.65m
(L×W ×H) Pedestrian P .......

.........................................................

....: 0.35m× 0.50m× 1.90m
LOS condition L .......

.........................................................

.... (idle, no blockage)
Measurement Runs 420 multimodal CSI traces per UE

ering real-world CSI data of traversing users. Afterward, we
explain the ML process suitable for ISAC within a factory EI
deployment, facilitating factory automation and critical safety
applications in Sec. III-B.

A. Design of Experiments for mmWave CSI Data Acquisition

The deployment scenario is located within a 6 m high
hall featuring an evaluation area in which three commercial
UEs, all at a height of 1.15 m, are served by the mmWave
antenna installed at 3.2 m height in the corner of the hall. The
propagation path of the LOS links is in the range of 6.65 m to
7.05 m. The new radio (NR) mmWave cell pencil beams with
the synchronization signal block (SSB) identifications (IDs) 1,
2, and 3 serve UEs A,B,C. Moreover, the mmWave cell op-
erates with a bandwidth of 800 MHz and 27.1 GHz center fre-
quency. A sub-6 GHz long term evolution (LTE) cell provides
an anchor link at 2.6 GHz with 20 dBm equivalent isotropically
radiated power (EIRP) to sustain the mmWave links with both
cells. Tab. I summarizes the relevant system details.

As depicted on the left side of Fig. 2, the UEs are mounted
along a 7.0 m long two-lane track, each 0.6 m wide. Both
AGVs and human workers, see details in Tab. II, shall traverse
these lanes in either direction to move safely in the factory en-
vironment. Due to this mobility, they influence the radio chan-
nels of the UEs, connecting the machines on the factory floor.

The RAN feeds passive RSRP information along mmWave
and anchor links with a time resolution of about 1.5 ms to the
EI to perform the sensing task (cf. Sec. III-B). Additionally,
the mmWave cell logs SSB beam IDs with 1 s time resolution.
However, this allows only limited insights as more information
about the UEs’ antenna array states is also needed.

We conducted systematic measurements to gather real-world
mmWave data for ML model training. First, we measured each

radio link 60 times under LOS L .......
.........................................................
.... conditions. After that, we

captured CSI traces for AGV A.......
.........................................................
.... and pedestrian P .......

.........................................................

.... passing
the UEs at walking speed. Specifically, we conducted 4× 45
measurements for each vehicle type, with 45 per lane (track 1,
track 2) and movement direction (Dir. A → C, Dir. C → A).
Afterward, we labeled the captured CSI traces for each UE
and scenario accordingly. Fig. 3 shows some traces outlining
that CSI traces exhibit distinguishable characteristics depend-
ing on, e. g., road user class, passage direction, and carrier
frequency. The full dataset is available under [17].

B. Direction Estimation and User Classification at the Edge

This section introduces IMMERSE’s passage direction es-
timation and vehicular user classification components.

1) Direction Estimation: We apply a threshold-based al-
gorithm that detects the actual periods of user passages in
the real-time CSI streams. By correlating the time offsets of
detected blockages for time series acquired by UEs A, B, and
C, it is possible to determine the passage direction (cf. Fig. 3).
We treat this objective as a hyperparameter optimization
(HPO) task to find suitable parameters for the detection algo-
rithm. More specifically, we use the experiment execution and
hyperparameter tuning library Ray Tune [18], which iteratively
evaluates candidate sets of a confined search space. In this
work, the search space includes the threshold sensitivity St,
the minimum blockage length τmin, and the standard deviation
σ for the Gaussian filter. St controls the detection algorithm’s
susceptibility to attenuation of the radio link, τmin excludes
detection owing to high-frequency fading, and σ controls the
degree of smoothing of the raw time series data.

2) User Classification: IMMERSE leverages a multi-stage
ML approach containing feature extraction and selection stages
as well as iterative HPO and neural architecture search (NAS)
for finding and evaluating high-performance ML and deep
learning (DL) models (see middle and right columns of Fig. 2).
The following paragraphs explain this in more detail.

Labeling of CSI Subsequences: The gathered CSI time
series comprise 8,000 samples, where only short portions rep-
resent the actual user passages. We first manually slice these
into shorter subsequences. Then, we label each subsequence
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Fig. 4. Identified DNN model architectures for classifying between LOS
conditions (L) and vehicle passages by AGVs (A) or pedestrians (P) traversing
track 1, utilizing mmWave CSI data from (a) UE A and (b) UE B.

selecting from the set {LOS L .......
.........................................................
....,AGV A.......

.........................................................

...., pedestrian P .......
.........................................................
....}. We use

these labeled raw CSI subsequences for convolutional neural
networks (CNNs), whereas we forward them to the feature
extraction step for use with deep neural networks (DNNs) and
random forests (RFs).

Feature Extraction and Selection: We use tsfresh [19]
to systematically deduce features, spanning domains like
statistics and time series analysis (TSA), from the labeled CSI
subsequences. It extracts hundreds of features that describe
the characteristics of the time series. We utilize feature
significance tests to reduce the feature set and thus improve
the learning process. In a two-step evaluation process,
hypothesis tests evaluate each candidate feature in terms of its
statistical significance for the label (e. g., AGV or pedestrian),
leading to vectors of p-values. Finally, the Benjamini-Yekutieli
procedure selects relevant features by discarding less relevant
ones. Generally, statistical tests cannot guarantee optimal
feature filtering, and thus, the feature sets may vary depending
on the input data. However, IMMERSE applies this statistical
approach as different ML and DL models are trained and
evaluated for a common feature-based input dataset.

Hyperparameter Optimization and Neural Architecture
Search: We then pass the derived feature data to the iterative
HPO and ML model evaluation process step. After defining
the search space with parameters of interest and the target
objective (e.g., classification accuracy), the search algorithm
schedules experiment runs for different model candidates
with parameter variations. The parameter search then yields
the ML model performances achieved by each experiment
run, allowing us to individually select suitable parameter
sets for the models under investigation (MUI). IMMERSE
trains and analyzes the user classification performance of
CNN, DNN, and RF models in the model evaluation phase.
We utilize the NAS framework [20], which runs an efficient
multi-step model architecture search based on Tensorflow to
determine the top-performing CNN and DNN models. We use
the softmax cross entropy loss function for model training
and define the initial learning rate within [10−6, 10−2].

Fig. 4 shows the architectures of the best-performing DNN
models found for mmWave data gathered by UEs A and
B, classifying either L .......

.........................................................

...., A.......
.........................................................
...., or P .......

.........................................................

...., respectively. The search
algorithm creates new model candidates by stacking neural

network building blocks (e. g., dense and flatten layers) to
a set of architecture candidates before randomly mutating
them. Since NAS is time-consuming and computationally
intensive, IMMERSE applies Hyperband to speed up the
HPO through different means, like early stopping. IMMERSE
also comprises lightweight RF model implementations pro-
vided by [21] in the classification evaluation because previous
works, including our study in [13], have shown that RFs may
outperform more complex DNN models on small and mid-
size datasets due to their ensemble nature, fostering improved
prediction performance and overfitting robustness.

IV. EVALUATION OF IMMERSE

This section presents and discusses IMMERSE’s perfor-
mance results regarding ML-aided user classification and
threshold-based passage direction estimation. First, we investi-
gate the prediction performances for the three-type user classi-
fication task {L .......

.........................................................

...., A.......
.........................................................
...., P .......

.........................................................

....}, using mmWave and sub-6 GHz RSRP
time series data gathered by the UEs A, B, and C, respec-
tively. Then, we briefly discuss the feasibility of the provided
multi-node system deployment regarding threshold-based user
passage detection and direction estimation in Sec. IV-B.

A. Multi-Class User Classification

Tab. III summarizes the classification accuracy results of the
best-performing models found in our extensive model search
for user passages on track 1, which is close to the UEs.
We use raw time series data (CNN) or extracted feature data
(DNN, RF) from NR mmWave and LTE sub-6 GHz RSRP
time series. We observe apparent performance gaps for the
different UEs and the RAT-specific RSRP data. Regardless of
the RAT, the CNN models perform significantly worse than
the DNN and RF models. With the specific model architecture
and input data types in mind, the CNN models try to infer
the temporal relationship of each sequence step. In contrast,
DNN and RF models do not need to infer such relations as we
provide relevant feature data. Moreover, the labeled time series
data comprises hundreds of sample values, demanding more

TABLE III. CLASSIFICATION RESULTS FOR USER PASSAGES ON TRACK 1.

CSI of
UE

Sensing Metric
[RSRP]

Model Accuracy [%]
CNN DNN RF

A
mmWave (27.1 GHz) 83.85 100.00 100.00

LTE (2.6 GHz) 57.02 96.49 99.42

B
mmWave (27.1 GHz) 59.49 97.43 98.78

LTE (2.6 GHz) 63.41 91.67 93.24

C
mmWave (27.1 GHz) 59.64 97.85 97.09

LTE (2.6 GHz) 56.16 94.20 95.17

TABLE IV. CLASSIFICATION RESULTS FOR USER PASSAGES ON TRACK 2.

CSI of
UE

Sensing Metric
[RSRP]

Model Accuracy [%]
CNN DNN RF

A
mmWave (27.1 GHz) 82.86 100.00 100.00

LTE (2.6 GHz) 67.95 97.44 100.00

B
mmWave (27.1 GHz) 60.16 94.67 98.92

LTE (2.6 GHz) 66.67 94.78 95.44

C
mmWave (27.1 GHz) 66.94 100.00 100.00

LTE (2.6 GHz) 63.86 90.76 91.71
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Fig. 5. Confusion matrices of the classification performances for different ML models, RAT channel data, UEs, and tracks.

intensive training and complex CNN models. Using DNN
and RF with mmWave data gathered by UE A, IMMERSE
achieves 100 % classification accuracy, revealing its high suit-
ability for user classification. In comparison, utilizing feature
data extracted from LTE time series data of UE A leads to
slightly lower accuracies, likely due to the omnidirectional
LTE antennas causing more clutter within the time series. The
achieved classification accuracies confirm the superiority of
beam-based mmWave data, where the performance gap ranges
from 1.92 to 5.76 percentage points, respectively.

Tab. IV provides the classification performances for the
different UEs and RATs concerning AGV and human passages
along track 2, which is more distant from the UEs. Utilizing
mmWave data of UE A still allows for 100 % classification
accuracy. However, mmWave data from UE C also facilitates
100 % accuracy using DNN and RF, increasing the score by
1.15 (DNN) and 2.91 (RF) percent points compared to the
track 1 scenario. These results underline that the sensing per-
formance improves as the distance between UEs and passing
users increases.

The confusion matrices in Fig. 5 show the user-specific
accuracy performances of (a) the DNN and RF models for
mmWave data gathered by UEs A, B, and C and (b) the
prediction performance of RF for LTE RSRP data, considering
user passages on tracks 1 and 2, respectively. The UE-specific
classification task (a) emphasizes the high classification ac-
curacy when evaluating mmWave CSI data with DNN or RF.
Considering mmWave data from UEs B and C leads to slightly
lower performances due to the confusion of some A.......

.........................................................

.... and P .......
.........................................................
....

passages. This confusion is particularly significant for DNN
and UE C mmWave data, where only 67.9 % of A.......

.........................................................

.... and 86 %
of P .......

.........................................................

.... passages are correctly classified. This performance drop
may be due to the scenario’s environment, possibly resulting
in cluttered time series data caused by signal reflection, etc.
Regarding Fig. 5 (b), we determine classification performances

of 100 % for the RF models trained with mmWave and LTE
data for both user passages on tracks 1 and 2, except when
using LTE data gathered in the track 1 passage scenario.
The RF model falsely classifies 1.7 % of L .......

.........................................................

.... as P .......
.........................................................
.... passages.

Referring to Fig. 3, this misclassification is reasonable because
short-term signal attenuation induced by pedestrians P .......

.........................................................

.... can be
erroneously interpreted as a deep fade.

B. Direction Estimation with Beamforming Analysis

In addition to the previously discussed ML-aided user
type classification, we leverage the multi-node system design
with spatially distributed UEs to perform threshold-based user
detection and direction estimation. The confusion matrix in
Fig. 6 shows the binary direction estimation performance
normalized over the true conditions (Dir. C → A, Dir.
A → C). The results reveal an almost symmetrical direction
estimation performance with a mean accuracy of 97.8 % and
a 2.3 percentage points asymmetry. The few misclassifications
result from incorrect time offset determination, which can
occur if, for example, only two out of three UEs detect a
passing user. However, the naive threshold-based detection and
direction estimation approach achieves robust results, which is
necessary to estimate a user’s trajectory. In future work, the
estimator can be improved using radio link-specific features.

Finally, this section considers the results of cell side beam
usage. We gathered aggregated SSB beam information with
an update rate of 1 s and present the relative beam activity for
L .......

.........................................................

.... and user passages {A.......
.........................................................
...., P .......

.........................................................

....} at tracks 1 and 2, respectively.
The left side of Fig. 7 shows a fair allocation of BS antenna
beams with beam IDs 1 to 3, each serving one UE under
LOS conditions. Considering the user passages {A.......

.........................................................

...., P .......
.........................................................
....} (see

right side of Fig. 7), we observe a beam switching with an
unequal share of beams with IDs 1–3. In addition, previously
unused beams are temporarily used, depending on whether the
users traverse on track 1 (IDs 1, 4) or 2 (ID 7). This behavior
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indicates that the CSI traces are affected by the inherent beam
management of the network, such that characteristic RSRP
blockage behavior is only partially observed compared to
traces in our recent study [13], affecting the performance of the
vehicle classification and direction estimation. In future work,
we would like to highlight the potential of xAPP software
development, which finely tunes the beam management to
optimize the sensing scheme.

V. CONCLUSIONS

In the scope of ongoing 6G research in the field of ISAC, the
exploitation of native wireless channel information enables pri-
vate industry networks to cater sensing services for shop floor
automation. This paper first measures cellular mmWave and
anchor band channel data affected by ambient indoor mobility
of AGVs and humans. We show that edge intelligence may
facilitate CSI of distributed devices to detect and characterize
mobility along transportation lanes.

The takeaways of this paper are as follows. Contrasting
related works, we showcase RAT-external use cases of
blockage detection and transfer the concept from test platforms
to an actual indoor mmWave cellular system. The proposed
IMMERSE approach applies current DL and lightweight ML
models with gathered mmWave and sub-6 GHz channel data,
highlighting their high suitability for sensing. Specifically,
RF reveals a more robust classification accuracy, slightly
outperforming the DNN-based method utilizing mmWave

data. Otherwise, the overall performance significantly drops
using sub-6 GHz anchor band CSI data, resulting from more
cluttered time series data due to omnidirectional antenna
deployment. Moreover, we show that our multilink system
deployment incorporating multiple UEs can estimate the
moving direction of traversing users with 97.7 % accuracy.
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