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Abstract—Future wireless networks will integrate sensing func-
tionality to improve communication performance and offer ser-
vices for verticals. An example use case of 6G sensing could
be in the context of future intelligent transportation systems
(ITSs) aiming for versatile benefits, including environmental
and socioeconomic factors. To this end, accurate road traf-
fic information acquired in real-time by ubiquitous cellular
networks will be paramount to impose instant measures and
develop data-driven long-term solutions. This paper showcases
the wireless radio channel as a privacy-preserving environmental
sensor intrinsically affected by its surroundings, facilitating edge
intelligence for road traffic monitoring. Notably, we consider
millimeter-wave (mmWave) deployments owing to their prop-
agation and communication system characteristics for sensing,
i.e., low penetration and diffraction combined with directional
beamforming antennas and high bandwidth. We employ real-
world mmWave channel traces gathered in an urban road traffic
scenario to demonstrate its suitability for two use cases well
suited for future 6G sensing services. Utilizing machine learning
(ML) and deep learning (DL) models, we demonstrate road user
classification accuracy of up to 99.8 % and 97.8 % for binary
and three-class traffic counting, respectively. In the second use
case, we outline the feasibility of mmWave-enabled estimation of
passing vehicles’ moving direction with up to 92.3 %.

Index Terms—6G, integrated sensing and communication, road
traffic monitoring, millimeter-wave, channel state information,
machine learning.

I. MOTIVATING 6G SENSING FOR ITSs

Cellular networks offer a versatile, high-speed, low-latency,
and robust communication infrastructure. Whereas there is
an almost ubiquitous 5G coverage at sub-6 GHz frequencies,
ultra-high connectivity may be provided in urban hotspots
using mmWave carriers. Turning towards future 6G, the net-
work infrastructure will become perceptive of its environment
using inherent radar-like sensing functionalities [1] to improve
communication performance and serve verticals within the
scope of integrated communication and sensing (ICAS).
High-performance sensing services are expected at mmWave
frequencies because of changed propagation characteristics,
the broad bandwidth for high time, and the large beamforming
antenna arrays for high angular resolution [2, 3].

The seamless integration of commercial-grade user
positioning introduced with 5G can be seen as the forerunner
of the 6G ICAS vision [4]. By integrating multiple such
services, the spectrum and cost efficiency of 6G networks
can be improved while making some dedicated systems
obsolete [1, 5] or enhancing their performance by sensor
fusion [6]. With numerous research questions regarding
bistatic radar-like sensing capabilities in 6G yet to be
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Fig. 1. 6G networks shall become environment-perceptive, making dedicated
solutions obsolete. For example, mmWave frequencies facilitate privacy-
preserving urban road traffic monitoring in the scope of ITS.

addressed [7-9], exploiting regular channel statistics in
monostatic deployments has become a hot research topic.
Recent research has established that communication-centric,
bistatic system deployments are also suitable for ICAS
applications. For example, the authors in [10] demonstrate that
a two-node mmWave-based system can predict link blockages
as a form of environment monitoring within an urban vehicular
scenario to re-align the beam for a robust communication link.
In this paper, we utilize extensive mmWave measurement
data provided in [10] to perform DL-aided vehicle type
classification and movement direction estimation for ITSs.
Similarly, so-called radio-based sensing techniques (ra-
dio tomography) at sub-6 GHz frequencies leverage wireless
channel state information (CSI) between base stations (BSs)
and connected user equipments (UEs) to successfully detect
road users [11] with favorable system properties in terms
of accuracy, privacy, cost, and robustness compared to alter-
native approaches [12]. Contrary to vision-based solutions,
its advantage for vehicle classification is the synergy of
communication and sensing services, potentially facilitating
a cost-efficient, large-scale and privacy-preserving operation.
Overall, the design of such systems is a trade-off between
economic and performance-related needs, making dedicated
solutions indispensable for some use cases. Transferring this
concept to future 6G mmWave networks, Fig. 1 illustrates
road traffic surveillance in an urban setting by leveraging the
received signal strength (RSS) metric. Whenever the line-of-
sight (LOS) link between the BS and the road-side unit (RSU)
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UE is (partially) obstructed by passing road users, the BS gath-
ers characteristic channel patterns caused by signal attenuation
and reflection along the distinct spatial direction defined by
the beamforming antenna array state. The acquired multidi-
mensional data enable BSs or downstream core network (CN)
components to deduce comprehensive insights into regional
road traffic patterns [3]. Real-time data, such as traffic volume
and speed, allow instant measures, such as dynamic traffic re-
routing or vulnerable road user warnings [13]. Furthermore,
this research has the potential to significantly support urban
planners, providing them with the data they need to make
informed decisions and implement targeted traffic regulations
and mobility concepts. This, in turn, could lead to significant
environmental, economic, and public health benefits.

Against this background, this work contributes the following
practical aspects to the current state of research on mmWave-
aided ICAS for road traffic monitoring.

o We utilize a large-scale, real-world mmWave measurement
dataset [10] to showcase the suitability of spatiotemporal
RSS link patterns for DL-enabled, network-external ITS ser-
vices. This contrasts with [14], which focused on LOS link
blockage prediction as a network-internal sensing service.

o We present a multistep ML/DL-aided classification and di-
rection estimation approach for different road users, levering
only in-band RSS patterns.

« We evaluate convolutional neural network (CNN), deep
neural network (DNN), recurrent neural network (RNN),
and Random Forest (RF) models to classify heterogeneous
road users into (i) two and (ii) three classes. In addition, we
provide an outlook on estimating moving directions.

The remainder of this paper is as follows. In Sec. II, we

describe the methodology for acquiring and pre-processing the

mmWave channel measurement data, followed by the neural

architecture search (NAS) process to identify suitable ML

models for the different tasks. We then discuss the prediction

performance of the best-performing models in Sec. III for

(i) the two classification tasks and (ii) their suitability for

estimating the driving direction of vehicles. Finally, Sec. IV

concludes with the key findings of our work.

II. METHODOLOGY

This section describes the mmWave dataset, data pre-
processing, and estimator training. In Sec. II-A, we briefly
introduce the dataset and data pre-processing following [14]
to preserve maximum performance comparability, followed
by the taxonomy used for vehicle classification. Sec. II-B
explains the model architecture search applied to find
high-performance yet less complex DL models.

A. Real-world mmWave Dataset

This work uses the open-data and real-world mmWave mea-
surement datasets provided in [10]. For gathering mmWave
data, the authors used a fixed multi-modal sensor setup includ-
ing 60 GHz BS and UE, closely positioned on opposite sides of
a two-way road, to obtain LOS link blockage patterns induced
by passing road users. The BS uses a 16-element uniform

linear array (ULA) with a 64-beam codebook, performing
beam steering with 1.4° azimuth steps. Tab. I summarizes
relevant information about the measurement setup, the dataset,
and the applied data pre-processing steps.

Fig. 2 shows an example of a normalized mmWave power
pattern over time gathered during a vehicle passage (red-
colored region), prepared as a heatmap (fop) and line plot
(bottom). The heatmap reveals that the center beams carry
much of the total received signal power due to the ULA
performing horizontal beam sweeping. The center beams point
towards the UE, resulting in higher RSS levels. The bottom
plot depicts the mean received signal power over time. The
mean RSS is relatively constant before and after the link
blockage caused by the passing vehicle. But imminent to
the blockage, the power pattern exposes a peak. Consistent
with [14], we call this phenomenon the pre-blockage signature,
mainly due to constructive and destructive interference induced
by passing vehicles. During the passage, road users function
as scatterers, focusing the electromagnetic (EM) waves on the
direct propagation path between BS and UE before turning
this effect into the opposite by blocking the path. Since this
signature is characteristic of different vehicle types, depending
on their specific shapes, materials, etc., we leverage this to
classify vehicle types (radio-fingerprinting).

Before the classification step (cf. Sec. III-A), we identify
and label vehicle passages in the continuous mmWave data
streams using synchronized image data from the dataset.
Because we intend to analyze the significance of different
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Fig. 2. Example of a 2D multi-beam mmWave power pattern affected by

a passing road user (fop). The 1D representation (bottom) reveals the two
characteristic components of such a power pattern: the actual blockage and
the imminent pre-blockage signature.

TABLE I. OUTDOOR MMWAVE MEASUREMENT SETUP [14] AND
DATA PRE-PROCESSING FOR THE MACHINE LEARNING.

Parameter Description

Deployment Stationary receiver (RX) and transmitter (TX)

Data modalities 60 GHz mmWave RSS, GPS, Images
16-element phased array (ULA)

mmWave RX using 64-beam codebook

mmWave TX Omni-directional

Scenario data Scenarios 17-21 (1,731 passage sequences)

Standardization, Beam-wise averaging,
Edge-padding (only complete sequences),
Data augmentation (10 dB)

Data pre-processing
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Fig. 3. Taxonomy used for binary and three-type vehicle classification in ac-
cordance with [15]. The former task focuses on LV and HV (fop), whereas the
latter conducts a more fine-grained distinction of PV, TV, and HV (bottom).

sequence types and beam sets in Sec. III, we prepare six
dataset variations with different input sequence lengths and
beam combinations for each classification task. In particular,
input data differs regarding the input sequence type (complete
vs. pre-blockage signature) and number of beams (64, 54, and
10), respectively. Hereafter, we standardize this data for an
efficient model learning by subtracting its mean p and dividing
by its standard deviation o. Using edge-padding, we gather
equal-sized sequences required by models like DNN and RF.
Because the original dataset has sets of varying cardinality
for each vehicle class, we mitigate this imbalance using data
augmentation. For this, we duplicate random samples of the
minority classes and add a 10dB white Gaussian noise. This
leads to datasets with 3,210 samples for the binary and 4,023
samples for the three-type classification tasks, respectively. We
average the multi-beam magnitude data to enhance the model
evaluation, resulting in flattened sequences suitable for ML
models such as RFs. Similar to [14], we group the various
identified vehicle-type passages into Npc = 2 and Np¢ = 3,
leaving out human (non-vehicle) road users, as depicted in
Fig. 3. For the binary classification task (Ngc = 2), we
divide all labeled vehicle passages into the classes light-
weight vehicles (LV) and heavy vehicles (HV). Analogously,
we group all labeled passages into Np¢ = 3 classes, splitting
the LV class into passenger vehicle (PV) and transport vehicles
(TV) classes.

B. Neural Architecture Search for Deep Learning Models

Finding high-performance yet low-complexity model archi-
tectures is time-consuming and computationally expensive.
Thus, we utilize the NAS framework provided by [16], which
builds up on ZensorFlow, to discover suitable CNN, DNN,
and RNN models. To enhance the model search, we apply the
hyperparameter optimization approach Hyperband [17], speed-
ing up randomized hypertuning through adaptive resource
allocation and early stopping. As a performance baseline,
we also provide the results for RF, utilizing scikit-learn’s
model and randomized parameter search. Fig. 4 illustrates the
NAS process: a search algorithm finds model architectures
by incrementally stacking neural network building blocks
B (e.g., recurrent or convolutional layers) to a set of ar-
chitecture candidates C' before applying random mutations.
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Fig. 4. We use NAS to find well-performing DL models. The process
incorporates two main components: the search component for building and
mutating candidate architectures and the ensembling component for average-
weighting multiple candidate repetitions.

More specifically, the NAS algorithm incorporates a search
and a mutation component. The former component finds
new candidates ¢ € C by stacking up to k£ blocks and
iteratively mutating them. The mutation component invokes
random mutations to the best-performing candidate ¢ with the
minimum loss, possibly increasing its network depth to a user-
defined depth limit k. Before the mutation algorithm starts
training a new architecture, transfer learning ensures that those
parameters of blocks found in the original architecture and
its mutated derivative are preserved for further exploitation.
Last, an ensembling module A combines multiple copies of a
specific candidate, retraining those with different shuffled data
and initialization parameters. The final model is the average
weighted ensemble of the model instances.

Fig. 5 depicts the best-performing DNN model architectures
when using complete sequences with signal power data of
64 antenna beams. The figure’s top row (a) shows the DNN
architecture found for the binary classification task, whereas
the bottom row (b) depicts the corresponding one for the three-
type vehicle classification task. Both models stack multiple
fully connected layer (FCN) blocks, each incorporating a
flatten layer, a regular densely connected layer, and a rectified
linear unit (ReLu) layer. Both models mainly differ regarding
the count of FCN blocks and the intermediate dropout layers.

III. MODEL PERFORMANCE EVALUATION

This section presents the best-performing models found and
their specific evaluation results for different input data. First,
we present the vehicle type classification results for the binary
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Fig. 5. Identified DNN model architectures for classifying road users into
(a) two and (b) three classes, utilizing complete passage signatures with mean
power samples of 64 antenna beams.



and the three-type classification tasks in Sec. III-A. Then, we
give a short outlook on the suitability of the proposed approach
for estimating the motion direction of passing vehicles in
Sec. 1II-B.

A. Multi-class Vehicle Type Classification

Tab. II summarizes the accuracy results of the best-
performing models, using pre-blockage and complete signa-
tures and different sets of beam magnitudes as input data.

TABLE II. ACCURACY RESULTS FOR BINARY AND THREE-TYPE VEHICLE
CLASSIFICATION USING DL AND ML MODELS FOR DIFFERENT SEQUENCE
TYPES AND ANTENNA BEAM CONFIGURATIONS.

# Vehicle Sequence # Antenna Model Accuracy [%]

Classes Type Beams [14]' | CNN DNN RNN RF?
Pre-blockage 10 (inner) - 55.3 92.6 553 98.8
Signature! 54 (outer)! 81.5 565 968 625 [99.0

@ (16 time steps) | 64 (all) - 56.5 93.1 68.9 98.7
(@) Complete | 10 - 0 938 893 992
Signature? 54 - 90.7 974 908 993
(87 time steps) | 64 - 92.7 99.8 91.1 99.4

. 10 - 63.6 829 658 913

() freblockige | 54 637 | 612 871 653 9Ll
@ 1gnature 64 - 649 900 (94 913
10 - 87 961 877 936
() S.C"‘,‘”‘[ple‘f 54 - 862 (978 880 938
1gnature 64 883 963 898  93.6

Best model. [ Worst model.
2Used in own work [11, 12]

Highest accuracy according to related work [14]

We can determine a performance gap for the binary and
three-type classification tasks depending on the sequence type
data (complete vs. pre-blockage signature) rather than the
number of labels to predict. Specifically, there is a notable
gap for CNN and RNN, where the model-specific maximum
accuracy scores differ by at least 20 percentage points, respec-
tively. On the contrary, the performances vary less significantly
for DNN and RF. With the specific model architectures in
mind, the former models try to exploit the timely relationship
between sequence steps, whereas the latter are not aware of
this. This implies that the architectures of the CNN and RNN
models are inattentive to the given input data. Regarding the
binary classification task, the evaluated model architectures
achieve maximum prediction accuracies using complete signa-
tures with 64 beam power data. All models exhibit decreased
performances when this number of antenna beam data is re-
duced. This performance drop is significant for CNN (13.6 %)
and quite notable for DNN (6 %), whereas it is negligible for
RNN (1.8 %) and RF (0.2 %). Compared to the binary classifi-
cation, some models’ maximum prediction performances in the
three-class classification task are slightly lower. Specifically,
this applies to CNN and RNN, which achieve up to 88.3 %
and 89.8 % accuracy. The prediction performances of DNN
(97.8%) and RF (93.8%) are 2 and 5.6 percentage points
lower than for the binary task, yet well above 90 % accuracy.

A possible reason is that the CNN and RNN models
holistically grasp the relationship between the duration of
RSS drops and the inherent vehicle dimensions. Otherwise, it
seems difficult for them to extract such meaningful correlations
from the shorter 16-step pre-blockage signature sequences,
characterized by large shares of constant RSS values, followed
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Fig. 6. Confusion matrices of ML models found for (@) binary and (b) three-
type vehicle type classification. The normalized predicted true conditions for
both tasks show generally high prediction performances.

by a short-time peak of signal power (cf. Fig. 2).

The confusion matrices in Fig. 6 show the class-specific
accuracy performances of the CNN, DNN, and RF models for
both classification tasks, using complete signature traces with
power data of 64 beams. For the binary classification task (a),
the matrices confirm the high classification performance of
the provided CNN, DNN, and RF models. All models tend
to misclassify some LVs as HVs regarding the normalized
actual labels. This effect is more pronounced for the DL
models than for RF, possibly due to its ensemble nature,
fostering an improved predictive accuracy and overfitting
control. Otherwise, all models classify HVs correctly. This
prediction accuracy regarding HVs can also be observed for
all models in the three-type classification task, depicted in the
bottom row of Fig. 6. Contrary to the binary task for LVs,
all models achieve 100 % accuracy in identifying PVs. But
now, a few vehicles related to the class TV are challenging
for all models, leading to a degraded normalized performance
of 97.7% (CNN), 98.2% (DNN), and 98.9% (RF). In all
these cases, the models misclassify the TVs as HVs, revealing
uncertainties when classifying vehicles belonging to either one
of these classes.

B. Exploring Potentials: Moving Direction Estimation

In addition to the previously shown vehicle type classifi-
cation, trajectory determination of passing vehicles, such as
motion direction and traveled lane, is also of primary interest
in modern ITSs. With the help of real-time high-resolution
road traffic data, traffic models may help improve current
and future road traffic by empowering optimization services
like traffic re-routing and planning. This subsection gives
an outlook on the predictive performances of the previously
discussed model architectures regarding estimating passing
vehicles” moving directions. Since we know from previous
work that determining the motion direction using a single radio
link is challenging, we focus on specific beam configurations
and vehicle types for this task. Specifically, we choose three
different subsets of beam configurations, each incorporating
ten adjacent beams aligned to the left, center, and right,
to exploit potential spatial effects. Moreover, we limit this



TABLE III. ACCURACY OF VEHICLE MOVEMENT DIRECTION ESTIMATION
USING ML-BASED MMWAVE TOMOGRAPHY AS PROPOSED IN [3].

#Passage Sequence # Antenna Accuracy [%)]
Directions Type Beams CNN DNN RF
Pre-blockage 10 (inner) 76.9 84.6 615
; Signature 10 (left) 69.2 84.6 53.8
®m® (16 time steps) | 10 (right) 61.5 84.6 57.0
[ Complete 10 (inner) 769 769 69.2
Signature 10 (left) 84.6 76.9 61.5
(87 time steps) 10 (right) 76.9 923 769

analysis to HVs because they exhibit more pronounced signal
reflection and scattering characteristics due to their specific
large-scale front faces. We omit the data augmentation step,
as the used dataset includes 125 passage sequences with a
balanced share of both driving directions (0: left — right,
1: right — left). Tab. III lists the prediction accuracy for
CNN, DNN, and RF models, using complete and pre-blockage
signature sequences for different sets of beam power data.
We generally observe that the maximum accuracies achieved
are significantly lower than those achieved for the vehicle
classification studied in Sec. III-A. This applies, in particular,
to RF and DNN, which now yield less than 90% accuracy,
with one exception when using DNN (92.3%). Moreover, the
accuracy performance of the models fluctuates for the consid-
ered antenna beam configurations, regardless of whether using
complete or pre-blockage signature data. This behavior differs
from the prior classification task, where we observe that using
complete signature traces is beneficial in most cases. Similar to
the classification task, we cannot determine a preferred antenna
beam configuration, leading to superior prediction perfor-
mances for pre-blockage and complete sequence data. These
promising insights confirm the newly considered direction
estimation with a single mmWave link is a more challenging
task, which is worth further investigation in our future work.

IV. CONCLUSIONS AND OUTLOOK

In the scope of ongoing 6G research in the field of ICAS, the
exploitation of native wireless channel information is expected
to enable perceptive networks whose sensing services are, for
example, crucial for future ITSs. This paper uses real-world
channel data to examine the potential of multi-beam mmWave
CSI for privacy-preserving multi-class road user classification
and movement direction estimation.

The takeaways of this paper are as follows. Contrasting
previous works that leverage channel data for radio access
network (RAN)-internal optimization, e. g., by mmWave link
blockage predictions [14], we highlight sensing-as-a-service
perspectives. Specifically, we evaluate DL and ML models
for multi-class vehicle classification and provide an outlook
on passage direction estimation. The results show up to
99.8% and 97.8 % accuracy for binary and three-type road
user classification. Regarding movement direction estimation,
prediction accuracy is achieved by up to 92.3 % for heavy road
users (e. g., buses).

Generally, the high performance of both tasks underlines

the suitability and, thus, the importance of beamforming-
based angular information available at mmWave frequencies.
The results prove that a multi-class vehicle type classification
allows for very high prediction performances.

In contrast, vehicle moving direction estimation is promis-
ing but challenging when leveraging only a single radio link.
To improve direction estimation performance, future work
should address distributed multi-node system configurations
or combining different approaches (sensor fusion).

These promising results for both tasks encourage further
experimental performance analyses for selected commercial
use cases covering more complex settings like multi-lane
roads. Besides the performance aspects, practical factors are
of interest, tackling computational and, thus, economic costs.
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