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Abstract—Private networks represent a key innovation in
current 5G and future 6G networks, offering significant benefits,
particularly for vertical industries with mission-critical industrial
applications. Compared to public networks, the deployment of
numerous potential private networks demands automated net-
work planning while simultaneously meeting higher performance
requirements for targeted applications. Emerging approaches
have successfully utilized AI-based methodologies as a basis for
automated network planning in greenfield deployments within
licensed but purely private frequency bands. However, these
approaches fail to include and extend brownfield implementations
in public mobile networks, which would be crucial for private
networks running a shared operator model. Thus, this paper
presents an AI-based automated network planning methodology
augmented by our recently introduced and thoroughly validated
data-driven channel modeling approach, DRaGon. Further, this
combined AI-based planning methodology is extended to pro-
vide automated network planning solutions for shared private
networks within public macro networks. The overall planning
accuracy was successfully validated with only minor deviations
using public network deployments as ground truth. As a key
result, we demonstrate that the performance of the presented AI-
based planning method can reliably and accurately plan demand-
driven network expansions for professional applications with the
highest quality requirements.

I. INTRODUCTION

Non-public or private 5G networks introduce a new dynamic
in the deployment of Local Area Networks (LANs) and
Metropolitan Area Networks (MANs). In numerous countries,
especially in Germany, private entities are now able to build
their own 5G communication networks based on the 3.7GHz−
3.8GHz (n78) and 26 GHz (mmWave) bands. This allows for
the planning and implementation of networks specifically tai-
lored to meet the requirements of demanding applications, e.g.,
production environments. This stands in contrast to traditional
MAN-based public mobile communication networks, which
were deployed to provide a base coverage and quality for end-
consumer best effort services. Accordingly, automated network
planning is once again becoming a highly relevant field, as this
expertise is not available in most companies and the freedom
from interference of neighboring networks is expected by the
regulator to ensure the safety of underlying applications.

In previous works, Artificial Intelligence (AI)-based au-
tomated network planning for greenfield (fully dedicated)
deployments of private 5G networks (LANs) was successfully
developed and evaluated based on the k-means clustering
method [1] [2]. This operator model is also depicted in Fig.
1 on the bottom left. In order to precisely plan the network

Fig. 1. Industrial private networks require automated network planning
with highest reliability to meet mission-critical application requirements and
simultaneous seamless operation in public mobile network environments.

for demanding applications and to avoid interference at the
cell edges, highly precise Radio Environmental Maps (REMs)
are required as a basis for the automated network planning
method. In the previous works, ray-tracing simulations were
used as a basis to generate REMs for all possible Base Sta-
tions (BSs) positions and antenna configurations. However, to
further enhance the scalability and precision of the REM cal-
culations, the Machine Learning (ML)-based radio propagation
model Deep RAdio channel modeling from GeOinformatioN
(DRaGon) was integrated in the course of this work, which
was already proven to be more precise and faster than some
commercial ray-tracing simulators as well as analytical and
statistical models [3] [4].

Apart from the demand-based tailoring of 5G communi-
cation networks from scratch in the fully dedicated greenfield
approach, there is also the possibility to acquire spectrum from
public Mobile Network Operators (MNOs) to support vertical
services. This shared operation could be realized primarily
with the network slicing technology, which reserves a certain
virtual share of the spectrum for applications in order to
guarantee a certain quality of service (cf. Fig. 1 bottom right).
However, public networks usually do not support critical
applications as bandwidths are limited and the service levels
are designed for best effort end-user traffic. For this reason,
in this paper we want to present a brownfield approach in
which gaps in coverage are automatically mitigated by adding
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Fig. 2. Proposed Architecture for combining AI-driven radio propagation modeling and network planning.

more MNOs in the public band or by the targeted addition
of non-public BSs in the n78 band. In this way, non-public
LANs and public MANs can be planned in conjunction,
automatically, and rapidly, based on the same approach for
demanding vertical services.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, the proposed automated
network planning process is described in Sec. III. Afterwards,
the BS placement approach is validated in Sec. IV. Finally, a
detailed performance evaulation is provided in Sec. V.

II. RELATED WORK

Regarding automated network planning, there are related
works in the context of using ML for this purpose. Gazda
et al. present in [5] an unsupervised Self-Organizing Map
(SOM)-based method for automated coverage planning. In
[6], the k-means method is also used to place antennas with
different radiation patterns. However, in both of these works,
no detailed REMs are generated and utilized, as well as no
detailed capacity planning and no consideration of the cell
configuration is included. In [7], similar to the scenarios in this
work, existing networks are optimized via clustering methods
regarding their network utilization.

Moreover, there are works that focus on Convolutional
Neural Network (CNN)-driven radio propagation modeling.
The authors in [8] utilize six synthetic images as input data.
There, two CNNs work in parallel: one that depicts the
building side-view of the extended direct path as well as
the receiver and transmitter distances, and one that depicts
the building top-view as well as the distances’ top-views.
In contrast, in [9], not only synthetic images but also aerial
photos are used in combination. Also, the elevation is taken
into account and the direct path distance is fed into the CNN

as numerical feature. Eller et al. propose a model in [10]
that processes four synthetic input images depicting the direct
path’s surroundings and the distances to the BS and User
Equipment (UE). The model input is extended by a numerical
feature vector specifying the channel characteristics.

III. DESCRIPTION OF PROPOSED AI-DRIVEN AUTOMATED
NETWORK PLANNING

The proposed AI-based network planning approach is illus-
trated in Fig. 2. The process chain is mainly based on [1]. In
order to start the network planning, a target Quality of Service
(QoS) and area must be specified by the user. Afterwards,
the preprocessing (see Fig. 2-A) starts. This includes the
conversion of the target Data Rate (DR) to Received Signal
Strength (RSS) as described in [11] based on the following
Time Division Duplex (TDD) Uplink (UL)/Downlink (DL)
configuration: DDDDDDDDSSUUUU. Furthermore, public
data sources are utilized to build an environmental model of
the scenario and to extract real world BS positions if necessary.
These informations serve as the basis for the deep propagation
modeling (cf. Sec. III-A) and subsequent network planning (cf.
Sec. III-B) with the extended components explained in Sec.
III-C to III-E.

A. The DRaGon Model - Deep Propagation Modeling

In [3], we proposed a deep learning-based method to accu-
rately predict the path loss for a specific receiver-transmitter
pair. The evaluations showed that the proposed DRaGon model
is more accurate than state-of-the-art solutions like empirical
models and ray-tracing software. DRaGon’s simplified archi-
tecture is illustrated in Fig. 3. Based on the points of interest
(receiver-transmitter coordinate pairs), a 3D environmental
model incorporating building shapes and heights as well as



Fig. 3. Details on deep learning propagation modeling based on the DRaGon
approach.

elevation data is utilized for DRaGon’s feature extraction. The
latter outputs two distinct synthetic black-white 2D images
showing the direct path’s side-view and the receivers top-
view together with 13 numerical features. The latter holds
position-related features (differences in latitude, longitude, and
elevation, heights of transmitter and receiver), communication-
related features (frequency, bandwidth, empirical path loss
estimation), and features of the direct path between transmitter
and receiver (3D distance, number of intersections with the
terrain, distance through the terrain, number of intersections
with buildings, distance through buildings).

The Deep Neural Network (DNN) consists of a CNN, which
processes the image samples in six convolutional layers each
followed by a batch normalization and max-pooling layer.
In parallel, a Neural Network (NN) processes the numerical
features in four hidden fully-connected layers. A second NN
processed the CNN’s and feature NN’s outputs using one
hidden fully-connected layer. Note that the DNN does not
directly output the RSS, but the correction of the empirical
path loss estimation. The model is trained on an extensive
data set collected in different cities located in Germany and
Denmark using the public networks and with a hyperparameter
configuration resulting from massive hyperparameter tuning.
The exact hyperparameters are provided in [12].

As DRaGon’s feature generation process takes part in c++
while its ML is performed in python, we utilize pybind
in order to make the c++ functions accessible for python
and to allow an automatization of the whole DRaGon and
network planning process. To make the channel estimations as
efficient as possible, we implemented an interface that returns
a set of features together with the environmental images for
the predictions of an entire REM for one BS, when given the
corresponding BS information and a bounding box of the area
of interest. Instead of returning a list of images, a single large
image is generated, which forms a mosaic of the individual
image samples. This procedure is further accelerated by the
parallelization of the feature generation such that each process
generates the REM to one BS.

B. Rapid Automated Network Planning based on Clustering

In [1] and [11], the rapid AI-based automated network
planning method based on clustering was presented, which
is capable of coverage and capacity planning for greenfield
private 5G network deployments. The simplified architecture
of the planning process is illustrated in Fig. 4. For each

BS of interest corresponding REMs are required resulting
from highly detailed radio propagation calculations, like ray-
tracing and the DRaGon method (cf. Sec. III-A). These REMs
are used to derive their associated coverage shapes so that
the REMs are first tailored to the area of interest and then
further tailored based on the coverage requirements resulting
in complex coverage shapes.

In order to find a network planning solution, the algorithm
combines the given REMs for every possible BS position as
well as antenna configurations to calculate a network plan for
a given service level target based on a capacity requirement
and 5G configuration, e.g., bandwidth, numerology, and so on.
While exhaustive search could lead to the optimal solution, it
is not feasible based on the large amount of REMs and the
computation time of a single combination. For this reason, k-
means clustering is used to spatially group the given REMs
to reduce the amount of combinations. The clustering is
done based on the centroids of the derived coverage shapes.
Following, the best BSs in each cluster are identified and the
corresponding REMs are merged to one composite REM. The
number of clusters and thus the number of BSs is incremented
until the service level requirement is fulfilled. This leads to
a rapid calculation of a network planning solution based on
the given application requirements while using highly-precise
REMs instead of channel models.

Fig. 4. Overview of k-means clustering-based automated network planning.

C. Brownfield Deployment - Utilizing existing infrastructure

Compared to the original purpose of [1] to plan 5G
greenfield deployments of dedicated infrastructure in private
spectrum, we added an extension that consideres existing
infrastructure in the planning process and allows for a public
and private spectrum mix. Therefore, we modified the proce-
dure so that real world antenna locations can be provided as
input to the process and are taken into account both in the
radio propagation modeling and in the network planning. The
provided antennas can be classified into two types, which need
to be treated differently, described in the following.

Nearby Antennas: As antennas located nearby the area of
interest are likely to affect the available power and data rate
in this area, it appears reasonable to take these into account
in the planning process in order to optimize the placement
of new BSs when expanding already existing infrastructure.
When searching for the combination of the best antennas,
the already existing surrounding antennas are included. In [1],
the best combination is identified on the basis of maximum



coverage. As the latter is achieved rather quickly in this case,
a new score is established here, which is determined from:

• relative number of REM cells with RSS > -90 dBm
• relative number of REM cells with RSS > -70 dBm
• relative number of REM cells with RSS > -50 dBm
• mean RSS normalized to range [-40, -100] dBm
• minimum RSS normalized to range [-40, -100] dBm

whereby the score is calculated as the aggregate of the
individual categories and normalized to range [0,1].

Antennas inside area of interest: When enhancing existing
networks to meet vertical service levels, existing hardware
may appear located inside the area to be planned. In this
case, the clusters produced by k-means clustering algorithm
are utilized to identify to which cluster the existing antennas
belong to. Then, all identified clusters are eliminated and the
best antennas in the remaining clusters have to be found in
order to densify the existing network infrastructure.

D. Use of multiple priority areas

Another extension is the ability to deploy multiple priority
areas. The latters can be assigned to different QoS targets.
The network planning process then is carried out incremental:
First, the planning is performed for the priority area with the
highest demand. As soon as the QoS requirement for this area
has been met, the planning is dedicated to the priority area
with the next highest demand until the requirements of all
priority areas as well as the surrounding campus polygon are
fulfilled.

E. Allowing for mixed frequencies

Fully dedicated operation in the 3.7 GHz range enables high
data rates, which are typically required in private networks.
However, if the area to be covered is relatively large, it may be
useful for resource-efficieny reasons to consider planning with
lower-frequency BSs if the target QoS can still be guaranteed.
The user can therefore specify whether lower-frequency BSs
should be considered in the network planning.

IV. VALIDATION BASED ON REAL-WORLD GROUND TRUTH

Validation Scenario: In order to validate the antenna
placement of our approach, we have identified TU Dortmund
University Campus as a suitable scenario. To do so we utilize
public german networks as a ground-truth. As german 5G
networks are intended to densify the capacity of the 4G
networks, but do not provide an optimal area coverage, we
rely on public 1800 MHz 4G networks. We therefore refer to
the antenna positions provided by public sources and extract
the location data for the two german MNOs represented on
the university campus. As no reliable information on the BS’s
sectorization is known, we model one omnidirectional antenna
at each location instead of three sectors.

Fig. 5a shows the chosen polygon of interest together with
the extracted BS locations for the two MNOs. In addition,
Fig. 5b shows the extracted building polygons together with
the simulation area as well as the identified potential antenna
candidates. The simulation area includes a margin of 500 m to

(a) Validation area with
ground-truth antenna positions (b) Extracted buildings and

potential antenna positions

Fig. 5. Illustration of validation scenario at TU Dortmund University Campus.

the polygon bounding box and functions as the basis for the
area of the REM resulting from radio propagation modeling
based on DRaGon.

Validation Method: We validate our approach based on the
distance between the placed and the real-world BS locations.
While OpenStreetMap (OSM) offers detailed information
about the buildings’ shapes, it does not provide comprehensive
information on the buildings’ heights. To overcome this issue,
we assign a default building height of 12 m to buildings
for which no height information is available. However, in
the context of optimizing BS positioning, this can lead to
deviations from the true positions. It may happen that a
building is selected for the BS placement, which in reality
only has one floor, while a nearby building may not perform
as well in our simulation, but would be preferred in reality
due to its greater building height. Furthermore, there might
exist restricted zones, where mobile network BSs are not
allowed to be placed, but this information is not available.
To address these issues, we consider the top five network
planning results here and analyze the distance between placed
and true BS for all those five solutions. In this process, we
analyze how the distance behaves depending on the amount of
expert knowledge available about the environment. Therefore,
we start with greenfield-like planning, where no information
about existing infrastructure is given. Then, we analyze how
accurate the BSs are placed when the polygons surrounding
BSs are known. Further, we incrementally add the number
of known BSs located inside the polygon of interest. This
validation process is performed for both MNOs and the target
QoS for the network planning process is set to 100 Mbit/s DL.

Validation Results: In Fig. 6 we compare the five optimal
planned BSs combinations based on the proposed network
planning approach with the actual deployments for the two
considered MNOs. Initially, the BSs are placed from-scratch.
Due to the high Degree of Freedom (DoF), the planned
locations diverge strongly from the real deployment for both
MNOs. For MNO A, the positions differs by up to 550 m.
As depicted in Fig. 5a, the lower left BS on the campus
polygon’s area owned by MNO A is located relatively close to
its edge. When planning the location for an optimal coverage
on the polygon’s area, it does not seem appropriate to place
an omnidirectional antenna at the edge of the scenario, but
rather more central. Subsequently, the DoFs are incrementally
reduced by first adding information about the nearby antennas
and then gradually extending the established antennas inside



Fig. 6. Comparison of AI-planned BS positions against ground-truth data
from real-life MNO confirms validity of proposed network planning process.

the polygon. For both MNOs, a trend can be observed that
the planning increasingly gets closer to the real deployment
as the knowledge of infrastructure increases. If one out of the
two existing BSs is given for MNO A, the distance between
planned and real position is around 100 m, indicating that
our approach selected neighboring buildings to the one where
the real BS is deployed. As pointed out earlier, we do this
analysis on the basis that the public networks are ideally
planned for which we have no evidence. Furthermore, we do
not know all information about buildings and restriction zones
that might make our solution not applicable in real-world even
though it leads to better coverage. For MNO B, four BSs
are deployed inside our polygon of interest, allowing us to
perform a multi-stage analysis. To simplify the process, we
iteratively add the BS that was the most difficult to plan in
the previous stage. It can be observed, that with a decrease
of the DoFs, the distance diminishes. For the last case, where
only one remaining antenna needs to be placed, the best found
solution is the actually the real-life deployed position. The
other solutions consider buildings significantly further away
than in the iterations before. This is due to the fact that the
building density is relatively sparse in the BS’s region.

V. PEFORMANCE EVALUATION BASED ON PROFESSIONAL
INDUSTRIAL SCENARIO

Evaluation Scenario: Following the successful validation
of our methodology, we are now seeking to plan the network
for a professional industry scenario. We identified a part of
the world’s largest inner harbor in Duisburg, called Duisport
Logport, suitable for this challenge. The scenario is illustrated
in Fig. 7, where Fig. 7a visualizes the evaluation area together
with the existing neighboring infrastructure for MNO B with
1.8 GHz carrier frequency and 20 MHz bandwidth.

There exist multiple future applications in this area, e.g.,
Teleoperated Driving (ToD) tasks. Tab. I defines three types
of applications together with their QoS requirement in terms
of UL DR [13] that form the basis for the network planning
to be performed. As some of the applications are limited to
a certain area of the scenario, we identified different priority
areas, which are visualized in Fig. 7b. Note that Priority Area
3 refers to the scenario polygon itself.

TABLE I
TARGET QOS IN THE DUISPORT LOGPORT SCENARIO.

Application # UL Requirement
per User [Mbit/s]

Priority Area
1 2 3

Teleoperation Crane
(Indirect ToD) 5 15 x

Teleoperation Forklift
(Direct ToD) 3 30 x x

Other (Office) 1 35 x x x

Total UL Requirement [Mbit/s]: 200 125 35

We consider three different operator models (see also Tab.
II) in the following network plannings:

• Shared Operation: A 50%-slice of 10 MHz bandwidth is
provided from the 1.8 GHz public network. In order to
fulfill the QoS requirements, additional BSs are planned
in non-public frequency range with 3.7 GHz carrier fre-
quency and 50 MHz bandwidth.

• Shared+ Operation: Additional BSs are planned with
3.7 GHz carrier frequency and 50 MHz bandwidth for
Priority Area 1 and with 1.8 GHz carrier frequency and
20 MHz bandwidth for Priority Area 2 and 3.

• Fully Private Operation: BSs are planned with 3.7 GHz
carrier frequency and 50 MHz bandwidth without consid-
ering existing infrastructure.

TABLE II
CONSIDERED FREQUENCY MIX AND OPERATOR MODELS.

Public Frequency Private Frequency
Frequency 1.8 GHz 1.8 GHz 3.7 GHz
Bandwidth 10 MHz 20 MHz 50 MHz

Shared x x
Shared+ x x x
Fully Private x

For the evaluation, the percentage to which the QoS targets
are fulfilled in the individual priority areas is analyzed using
the following utility rate:

Utility Rate =
# REM cells with DRUL ≥ DRUL Target

# REM cells
(1)

Network Planning Results: Fig. 8 visualizes the QoS
fulfillment rates for each priority area and operator model

(a) Evaluation area with
ground-truth antenna position (b) Extracted buildings and

potential antenna positions

Fig. 7. Overview of case study: world’s largest inner harbor (Duisport
Logport) including application-based priority areas as planning targets.



Fig. 8. Planning progress of the Duisport Logport scenario for different
operator models.

plotted against the number of added BSs. In the context of
a Shared Operation, the QoS requirement for Priority Area 3
is almost fulfilled by the public infrastructure. For satisfying
Priority Area 1 six additional BSs are needed. While the
requirements of Priority Area 2 are already met by around
40% at this point, five further BSs are needed. In comparison,
for a Shared+ Operation only two further BSs are used.
For a Fully Dedicated network, the situation is similar to
Shared Operation with the difference that for meeting the
requirements of Priority Area 1 one further BSs is needed
and that the requirements of Priority Area 3 are not fulfilled
after placing twelve BSs in the scenario requiring to place one
further BS.

Fig. 9 shows the planning progress for the operator model
that is found to require the fewest BSs, namely Shared+

Operation. The planning progress is illustrated with the help
of RSS and DR REMs with an increasing number of BSs. The
REM resolution is set to 15 m. It can be seen that the overall
UL DR is relatively low for the public network slice, as it is
constrained to 10 MHz bandwidth. While for the 3.7 GHz BSs
significantly higher UL DR up to 260 Mbit/s are achieved, it
seems obvious that lower-frequency BSs with greater coverage
are more suitable for a resource-efficient expansion in Priority
Area 2 if they still meet the QoS requirements.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented an AI-enabled automated net-
work planning methodology leveraging deep-learning prop-
agation modeling for fully-dedicated and shared operator
models. The validation of our proposed network planner
method confirmed an accurate and highly reliable planning
result against complex real-world ground-truth scenarios. In
a professional industrial case study, the network planner was
utilized to fulfill mixed-critical application requirements. Dif-
ferent operator models were successfully applied in terms of
network densification to keep up with the increasing demands
of professional industry scenarios, where Shared+ approach
led to most resource-efficient planning results.

In future work we plan to adapt opportunities for BS
placement to meet specific environment characteristics such
as restriction of unsuitable buildings or building independent
placement. Further, underlying methods will be advanced to
cover mmWave characteristics for propagation modeling as
well as beam steering functionality. Additionally, we plan to
enhance the network planning approach to indoor scenarios
addressing challenging dynamics in for example logistics and
manufacturing.

Fig. 9. Planning progress of the Duisport Logport scenario illustrated as REMs for RSS and DR for increasing BS number until planning targets are achieved
when applying a shared operation with non-public frequency mix.
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[1] C. Bektas, S. Böcker, B. Sliwa, and C. Wietfeld, “Rapid Network
Planning of Temporary Private 5G Networks with Unsupervised Ma-
chine Learning,” in 2021 IEEE 94th Vehicular Technology Conference
(VTC2021-Fall), Sep 2021, pp. 01–06.
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