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Abstract—Traditional cellular Radio Access Networks (RANs)
are associated with significant costs and low agility due to
proprietary hard- and software resulting in vendor lock-ins.
Open RAN promises to change this by harnessing open source
and Commercial of-the-Shelf (COTS) solutions. Hence, the Open
Radio Access Network (O-RAN) Alliance, a consortium of part-
ners from industry and research, aims to identify and close gaps
in 3rd Generation Partnership Project (3GPP) specifications. It
defines a software-centric RAN architecture with open interfaces
to increase interoperability, strengthen innovation and lower
market entry barriers towards future 6G infrastructures. A core
concept in this context is the near-Real-Time RAN Intelligent
Controller (RIC), a virtual platform for hosting so-called xApps.
These software-based network functions provide functionalities
such as monitoring or network slicing. Using proactive resource
management, slicing has the potential of enabling concurrent
service profiles such as Ultra-Reliable Low Latency Communica-
tion (URLLC) and Enhanced Mobile Broadband (eMBB), while
rising spectral efficiency and lowering latency. Thus, this work
introduces an O-RAN-based framework for predictive uplink
slicing. An xApp is presented, harnessing deep learning to dy-
namically reconfigure RAN scheduling via the RIC’s E2 interface.
The evaluation is performed on the challenging example of
URLLC traffic from the Smart Grid domain via an experimental
laboratory setup. O-RAN introduces additional interfaces, yet the
framework performs about on par with proprietary solutions
with latencies down to 5 ms.

I. INTRODUCTION

Cellular networks such as Long Term Evolution (LTE)
are traditionally specified by the 3rd Generation Partnership
Project (3GPP) [1]. They include proprietary interfaces as
well as hard- and software components, particularly in the
Radio Access Network (RAN), often preventing operators
from mixing equipment of different vendors. Such a lock-in to
specific manufacturers potentially increases costs while closed
and proprietary interfaces, e.g. in the front-haul, may limit
innovation by raising barriers to market entry. Open RAN is a
concept which aims to address this by open sourcing aspects
currently not fully covered by 3GPP. Here, the international
Open Radio Access Network (O-RAN) Alliance [2], formed
by operators, incumbent and novel vendors as well as research
institutes, has emerged as the most prominent project. They
focus on open source software deployed on Commercial of-
the-Shelf (COTS) hardware to lower market barriers, reduce
costs and accelerate innovation cycles towards 6G [3]. As
depicted in Fig. 1, O-RAN core components are the non- and
near-Real-Time (RT) RAN Intelligent Controller (RIC). Acting
as the RAN’s operating system, they serve to host virtualized

network functions known as r/xApps. Examples include basic
tasks such as monitoring as well as novel services such as
Machine Learning (ML)-driven approaches to e.g. slicing. This
promises faster deployment of innovative solutions regard-
less of vendor, shortening the cycle from research to RAN
integration. Closely associated with these efforts is the O-
RAN Software Community (OSC), developing specification
compliant open software. This work introduces an O-RAN
compliant solution for predictive uplink slicing, fully based
on open source software. By partitioning uplink resources into
multiple virtually dedicated networks, i.e. slices, we aim to
meet requirements as diverse as Ultra-Reliable Low Latency
Communication (URLLC) and Enhanced Mobile Broadband
(eMBB). For evaluation, critical Smart Grid communications
are used. We employ a Long Short-Term Memory (LSTM)
ML model to predict uplink resource requirements, removing
delays incurred by Scheduling Request Occasions (SROs).
Hence, the slicing xApp running on the near-RT RIC needs to
provide accurate predictions within milliseconds.

The work is structured as follows: First, Sec. II provides
an overview of related work. Sec. III then describes the novel
predictive resource assignment and underlying ML concepts.
Next, Sec. IV introduces the employed O-RAN framework
integrating ML-driven slicing functionality as an xApp. The
experimental setup and results are given in Sec. V, highlight-
ing achieved gains in efficiency and performance. Finally, a
conclusion and an outlook are given in Sec. VI.
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Fig. 1: O-RAN architecture [2] with non- and near-RT RIC hosting
network functions such as this work’s predictive uplink slicing xApp
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II. RELATED WORK

As the open RAN concept is relatively new, related works
mostly concentrate on implementing the framework and eval-
uating its performance. Pioneers in this area are the authors of
[4], who embedded the E2 interface into srsRAN and provided
a policy-driven dynamic downlink slicing scheduler as an
xApp. In [5] the authors focus on the acquisition and collection
of data to be used with ML models for xApps. The underlying
scenario comprises multiple base stations and user devices
within a testbed, evaluating scalability of the open RAN
concept. An ML model is trained to perform RAN control via
RIC control messages to update base station configurations at
runtime. Promising results for maximizing transmit rate while
minimizing packet queue times are achieved. The authors of
[6] provide a setup comprising three User Equipments (UEs)
as well as a 5G Non-Standalone (NSA) base station. This com-
bination of the O-RAN framework with srsRAN also includes
a customized xApp for monitoring Key Performance Indicators
(KPIs). Also, the deployment of a downlink slicing xApp is
demonstrated by using the E2 interface to allocate resources in
the RAN. Building on the modified monitoring xApp, control
and report messages are used to configure a Next Generation
Node B (gNB) in different slices through asynchronous E2
control messages. RAN parameters are adapted by the control
service based on metrics collected by the report function. The
E2 agent is a key contribution, handling the signaling between
near-RT RIC and eNB/gNB. These works provide open source
resources, which enabled the research within this paper.

Research of ML-based resource management is driven by
the evolution towards 6G. Several frameworks are proposed
to increase spectral efficiency and promote self-organization,
e.g. in [7]. Network slicing is a particularly relevant use case
to intelligently provide resources, according to custom Service
Level Agreements (SLAs) or Quality of Service (QoS) param-
eters. Several works research network slicing by combining
software-defined RANs with ML. In [8], the authors formulate
and solve dynamic resource re-assignment among slices with
the Lyapunov technique. Two different slices are taken into
consideration with heterogeneous requirements concentrating
on delay and throughput. The authors of [9] present a Deep
Q-Network (DQN)-based framework for dynamic slicing and
scheduling on the base station level. A self-optimization
scheme is provided enabling adjustments to current network
and traffic conditions at runtime. Yan et al. [10] propose
an intelligent Resource Scheduling Strategy for RAN slicing,
which inherits a collaborative learning framework. Here, an
LSTM model is used for large timescales, as well as the
Asynchronous Advantage Actor Critic algorithm for small
timescales. Results show improvements over other prediction
algorithms in terms of resource utilization. The authors of [11]
examine network slicing when using a Deep Reinforcement
Learning agent, correlating industrial production activity and
network utilization. Thereby, the spectral efficiency of resource
allocation is improved and overall network performance is
increased. Within this work, we aim to achieve similar im-

provements in spectral efficiency by utilizing the concept of
Proactive Grants (PGs), specified by the 3GPP for 5G, and
prediction techniques to allocate resources precisely on the
uplink channel, mitigating delays.

III. MACHINE LEARNING DRIVEN
PROACTIVE NETWORK SLICING

This section describes the developed approach to proactive
uplink resource management based on ML.

A. Proactive Resource Management using Machine Learning

In a conventional reactive scheduling scheme, when a UE
intends to transmit data it requests physical resources in the
Physical Uplink Control Channel (PUCCH) during SROs. The
physical resources are then granted by the Evolved Node
B (eNB) via Downlink Control Information (DCI) on the
Physical Downlink Control Channel (PDCCH). As depicted
on the left side of Fig. 2, the waiting time for SROs is
a main contributor to the end-to-end delay in the uplink
communication between UE and eNB. In contrast, in [12]
a proactive scheduling scheme is developed. The proactive
approach mitigates the problem of large scheduling delays by
allocating PGs via the PDCCH in advance, making it obsolete
for the UE to request resources. Instead, as depicted on the
right side of Fig. 2, the UE can send its data in the moment the
packet is generated. However, to proactively allocate resources
without causing spectral inefficiencies, a highly accurate, real-
time capable model for predicting timing and payload of the
UEs’ data is required. As resources are scheduled every ms,
predictions must be available at this interval, too. Therefore,
the prediction process as well as scheduler and LSTM model
interfaces should minimize delays. Otherwise large prediction
horizons would result in low accuracies and thus low spectral
efficiency. In the previous work, a Representational State
Transfer (REST) interface is deployed for communication
between scheduler and ML model.
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B. Deep Learning for Real-Time Payload Prediction

As LSTM models are considered suitable for time series
prediction [13], we employ them in this work to proactively
manage physical resources by anticipating uplink data traf-
fic. To rule out the prediction model as a main source of
differences in test results, the model designed and trained
in [12] is redeployed. For training the model, Tensorflow
with a Keras backend is utilized [14]. This dataset is split
into 2

3 training and 1
6 validation subsets, whereas 1

6 of the
data is used for traffic generation by the UE during runtime.
Hyperparameter tuning using the hyperband tuner algorithm
in combiation with cross-validation is performed to achieve
a robust model with a prediction accuracy of 92.45 % on the
validation dataset. Table I shows the resulting parameters of
the LSTM. Apart from prediction accuracy, it is important that
the model produces several multi-step predictions simultane-
ously and in real-time. This is caused by the xApp requiring
predictions within pre-defined intervals, which can be faster
than they become available. Tensorflow provides a scalable
REST server for interacting with the underlying ML model.
Crucially, the REST server handles requests simultaneously
by creating multiple model instances. Hence, several partly
overlapping predictions are made concurrently, with the model
designed to generate 100 values in advance based on 1000
measured payloads. Our scheduler utilizes the most recent
prediction for each Transmission Time Interval (TTI).

Therefore, the basis for predictions performed by the model
is the arrival process of the individual, possibly fragmented,
payloads at the eNB. Since reactively scheduled packets have
non-controllable additional delays introduced by the Schedul-
ing Request (SR)-based scheduling as shown in Fig. 2, the
time of arrival at the UE’s transmission buffer is not known
by the eNB. Thus, if uncompensated, these payloads get
predicted only with a similar delay as they arrived, resulting
in a diverging behavior. Hence, a convergence algorithm is
developed to improve the timing accuracy. It monitors whether
the last predicted payload arrived via a proactive grant and
gradually shifts the predictions towards earlier grants until
this offset is overcompensated, resulting in one reactive grant.
Afterwards, the convergence behaviour improves.

IV. O-RAN-BASED REAL-TIME NETWORK CONTROL

The following section describes the evolution of the previ-
ously discussed closed-loop uplink slicing towards open RAN
interfaces based on a near-RT RIC-based xApp.

TABLE I: Training Parameter Settings

Learning Rate 10−4

Layer Structure LSTM (vanilla, 64 Units)
Dense Layer (Activation: linear)

Batch Size 4
Epochs 16

Loss MSE
Optimizer ADAM

A. O-RAN Architecture as a Basis for the xApp
A major innovation included in the open RAN architecture

is the specification and integration of two RICs. The non-
RT RIC is embedded in the Orchestration & Automation
Framework. Its purpose is to monitor and control the RAN
for non time-critical functionalities, such as the online training
of deep learning traffic models. Connected to the non-RT
RIC via the A1 interface, the near-RT RIC on the other
hand serves time-critical, low latency RAN control. Since the
framework presented in this work manages highly dynamic,
time critical network slicing resource allocation every ms,
the near-RT RIC (simply called RIC in the following) is of
special interest. Importantly, the RIC itself does not contain
control functionalities. Instead, it serves as a platform for
the deployment of scalable xApps, where control logics can
be implemented in a microservice-like fashion. Furthermore,
multiple xApps with different functionalities can be deployed
simultaneously. Messages between the xApp and the RAN
units, called E2 nodes, are managed by the RIC Message
Router (RMR), which is responsible for routing messages over
the E2 interface between the xApps and E2 nodes. The E2
Application Protocol (E2AP) defines message procedures and
these four service types for the E2 interface [2]:

• Report: Based on negotiated trigger events or on prede-
fined timers, the E2 node sends data to the xApp.

• Insert: Notifies the xApp of an event in the E2 node.
• Policy: Defined in a subscription message, policies spec-

ify E2 node behaviour during trigger events.
• Control: Using a control request, the xApp can set

parameters or behaviour in the E2 node. The control
request can be sent as a response for an insert message
or due to internal xApp processes. Requests have to be
followed by a control acknowledge from the E2 node.

This work uses control requests, as they can be triggered
autonomously by the xApp. In this case, the xApp sends a
control request over the E2 interface whenever the LSTM
model generates a new packet size prediction. Whereas the
E2AP defines general procedures, service-specific communi-
cation is defined in an E2 Service Model (E2SM) individually
for each service. The E2SM defines data and message types
using Abstract Syntax Notation One (ASN.1) and is known by
both xApp and E2 node. Both parties can compile the E2SM
into implementation-specific data types. To serve our xApp
written in C, for instance, the Service Model is compiled into
C-specific data types using the asn1c compiler [15], regardless
of the programming language of the E2 Node.

B. Designing an xApp for Proactive Network Slicing
Fig. 3 depicts the process of evolving the previously dis-

cussed uplink slicing scheme towards open RAN platforms
and interfaces. In [12], the slicing control logic as well as
the connectivity to the Tensorflow REST server is integrated
directly into an srsRAN 21.10 [16] eNB LTE stack and
evaluated via Software-Defined Radios (SDRs).

In this work, the slicing function is bundled in a newly de-
veloped Slice-Aware Machine Learning-based Ultra-Reliable
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and interfaces in contrast to a more traditional non-O-RAN setup presented in previous work

Scheduling (SAMUS) xApp which is integrated in an O-RAN
compliant RIC platform. The concept of SAMUS was first
introduced by [17] as a simulative framework for predictive
uplink slicing. The developed xApp and the integration into
the O-RAN and srsRAN-based framework works as follows:
A near-RT RIC provided by the OSC is deployed as a platform
for the proposed xApp. For scalability, RIC components are
bundled as Docker containers and deployed using Kubernetes
v1.16. The OSC provides software for the deployment of the
Kubernetes cluster [18]. Therein, RIC components based on
the O-RAN Cherry release are employed [19].

A core component of the SAMUS xApp is the prediction
controller. It is equipped with a REST server, which receives
a series of 1,000 consecutively measured Medium Access
Control (MAC) layer payloads sent by the scheduler for each
UE within 10 ms intervals. Payloads are identified by the
corresponding UE’s International Mobile Subscriber Identity
(IMSI) as well as the TTI number of the first payload value.
As the IMSI is not natively known by the eNB, it retrieves this
from communications between UE and Evolved Packet Core
(EPC) during attachment. Also, a mapping between IMSI and
Temporary Mobile Subscriber Identity (TMSI) is established.
The controller identifies a UE’s slice based on the IMSI. Our
xApp offers three modes: static proactive slicing, predictive
proactive slicing and a combination of both. Using static slic-
ing, the xApp returns future payload values based on precon-
figured settings. This guarantees UEs a constant bandwidth for
each TTI. For predictive slicing, historic values are utilized to
derive forecasts. To do so, the prediction controller sends mea-
sured payloads to the Tensorflow model’s REST server. There,

predictions for 100 future payloads are generated and sent back
via the Hypertext Transfer Protocol (HTTP) response. These
predictions are multiplied by a configurable overprovisioning
factor to increase UE throughput and reduce scheduling delay.
Also, payloads are limited to a maximum of 700 Byte per
TTI to ensure a minimum throughput for other UEs. Lastly, a
combination of static and predictive slicing is implemented by
statically defining a constant payload baseline and adding the
predicted (and scaled) values on top. The predicted payload
series is then encoded into an E2 control request via a newly
developed SAMUS E2SM. It consists of the predicted values
as well as the IMSI and the first TTI they correspond to. Using
the E2AP agent provided by [4], E2 control requests are sent
over the RIC’s E2 interface to the eNB stack. There they are
received and decoded (using the SAMUS E2SM) by an E2
agent developed by [6]. Next, E2 control requests are sent
to the scheduler to dynamically assign physical resources as
required by the UE’s packets. As depicted on the right side of
Fig. 2, predictions are utilized to schedule uplink resources in
the moment the packet is generated, consequently reducing
scheduling delays. Thus, predictions must be available for
every TTI. To support RAN control requests in real-time,
the E2 interface, which is based on the Stream Control
Transmission Protocol (SCTP), is specified to support control
message intervals from 20 ms to 1 s. An SCTP packet is only
sent after a Selective Acknowledgement (SACK) has been
received. The utilized E2 agent sends SACKs with the standard
delay of 200 ms, resulting in large control message intervals.
Hence, we tweaked the E2 agent to send SACKs immediately,
yielding control messages at intervals from 10 to 20 ms.
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V. EVALUATION SETUP AND RESULTS

In the following we discuss the evaluation setup and results.

A. Evaluation Scenario and Experimental Setup

The evaluation is performed on a physical test setup as
depicted in Fig. 4. EPC, eNB and the O-RAN RIC including
xApp are deployed on a shared server (AMD Ryzen 5900X
processor, 32 GB RAM, Ubuntu 18.04) to reduce latencies.
Two compact computers (Intel i7-6770HQ, 16 GB RAM) host
one UE each. They connect to Ettus Research USRP B210
SDRs in a wired setup, enabling reproducible results. An
RF combiner connects the SDRs of eNB and UEs. Our ML
model is deployed on a seperate server (dual AMD EPYC
7552 48-Core Processors, 512 GB RAM) and creates a series
of 100 prediction values within 15 to 35 ms. For evaluation,
the following real-world scenario is used: One UE is de-
ployed in a URLLC slice, transmitting critical International
Electrotechnical Commission (IEC) 60870 traffic (captured
within a realistic Smart Grid laboratory, c.f. [12]). During the
experiment, runtime data traffic is generated using Tcpreplay
[20]. Data packets are captured on both eNB and URLLC UE
using tshark. Devices are synchronized using the Precision
Time Protocol (PTP). In a second slice another UE sends up
to 10 Mbps of Best Effort (BE) data via iPerf2, effectively
trying to utilize all available uplink resources. As no delay
requirements are imposed for the BE slice, this UE’s resources
are always scheduled reactively. Hence, less throughput is
achieved than generated, since bandwidth is allocated to the
URLLC UE. The setup is parametrized so that all proactive
slicing approaches achieve the same throughput in the BE
slice. This way it is possible to compare the resulting URLLC
delays. For predictive slicing, the xApp scales forecasted
values up by a constant overprovisioning factor of 4 to reduce
URLLC delay. Using static slicing, a constant value of 50 Byte
per TTI is allocated. After mapping to Physical Resource
Blocks (PRBs), this results in an allocated bandwidth of
roughly 0.5 Mbps. Combining static and predictive scheduling,

the static portion is parametrized to result in about 0.25 Mbps
allocated bandwidth. To reduce unconditionally allocated re-
sources below the minimum of one PRB per TTI, a PRB is
only proactively scheduled e.g. every second TTI to halve the
assigned bandwith. Total allocated bandwidth also depends on
the predicted payload per TTI. The eNB is configured to a
bandwidth of 3 MHz, 15 PRBs and to a constant Modulation
and Coding Scheme (MCS) of 23 for the uplink, resulting
in a Transport Block Size (TBS) of 7480 bit. This yields a
total bandwidth of 7.48 Mbps for user and control plane data.
User plane throughput with two UEs as measured with iPerf2
is 5.99 Mbps. srsRAN is used in Frequency Division Duplex
(FDD) mode and each evaluation is based on over 10,000
samples, gathered by multiple measurements.

B. Results of the Empirical Evaluation

We compare a reactive, Round Robin (RR) slicing approach
with four PG-based methods, namely static slicing, predictive
non-E2 and predictive (as is and in combination with static) E2
slicing. For RR the URLLC UE is always granted PRBs with
higher priority whenever it requested these resources during
the prior SRO. Fig. 5 shows the resulting mean data rates.
Using the reactive strategy, the BE UE achieves a mean data
rate of 5.4 Mbps, which is higher than the achieved mean data
rate of any proactive slicing approach (approx. 4.9 Mbps). This
illustrates the nature of proactive resource allocation: Due to
prediction errors, resources are seldom allocated exactly to the
per-TTI requirements of the URLLC UE, leading to spectral
inefficiencies and thus reduced throughput in the BE slice. On
the other hand, a RR-based scheduler can tailor the allocated
PRBs exactly to requirements. None of the approaches achieve
the maximum possible user plane throughput of 5.99 Mbps,
though. The reason for this is a scheduling overhead consisting
of unallocated PRBs and reserved but unused bandwidth for
the URLLC slice to reduce delay peaks. As described in
sec. V, the proactive approaches are parametrized to achieve
equivalent BE slice throughputs. This allows a fair comparison
of end-to-end one-way URLLC delays, as given in Fig. 6.
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Delays are defined as the time packets require to reach the
Packet Data Network Gateway (P-GW) on eNB side after
being sent by the UE application. The mean lower bound
is the average delay measured when proactively assigning all
resources to the URLLC slice. The same performance could be
achieved by deploying a perfectly accurate prediction model.

As expected, the reactive approach has larger uplink delays
due to waiting periods for SROs. The median delay as well
as the upper and lower bounds are significantly higher relative
to proactive approaches. Among the latter, delays of predic-
tive solutions improve upon static slicing. Non-E2 predictive
slicing lowers the median delay by 3.4 ms. However, delays
also show higher peaks, indicating violations of optimal QoS.
This is due to larger prediction errors. Yet, the shape of the
violins indicates that these errors occur rarely. Most notable,
the predictive E2 approach results in a delay increase of 1.4 ms
compared to the non-E2 approach. This is caused by latency
of the E2 interface, which is required in O-RAN compliant
architectures, as well as overhead introduced by the xApp.
Thus, resource management on TTI basis can be performed via
the proposed O-RAN compliant framework without strongly
impacting performance. Furthermore, a combination of pre-
dictive E2 and static slicing significantly lowers peak delays.

VI. CONCLUSION AND OUTLOOK

This work presents a novel, O-RAN-based framework for
predictive uplink slicing. A near-RT RIC xApp is combined
with a Tensorflow ML model to perform real-time, proac-
tive RAN uplink resource management. This is evaluated
and tested using srsRAN radio via a real-world scenario.
Performance is shown to be comparable to a setup without
O-RAN compliance, although introducing several new inter-
faces. Hence, uplink delays down to 5 ms are achieved with
high spectral efficiency. In future work, the setup will be ported
and tested using 5G and 6G radios, further lowering end-to-end
delays. Additionally, non-RT RIC features will be harnessed
for online ML capabilities.
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