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Abstract—Future vehicular applications like Tele-Operated
Driving (ToD) and Communication-Based Train Control (CBTC)
pose demanding requirements on mobile communication net-
works. Despite continuous 5G technology upgrades and expan-
sion strategies, mobile networks cannot provide a full-coverage
service guarantee for the required mission-critical Key Perfor-
mance Indicators (KPIs). However, application and location-
specific Quality of Service (QoS) predictions are crucial to
reliably meet the highest QoS compliance of emerging future
smart city services.

Therefore, this paper proposes a digital twin capable of merg-
ing connectivity data with arbitrary application domains to derive
KPI predictions for mission-critical applications. The potential of
the proposed approach is illustrated based on a case study in the
urban area of Dortmund, Germany, considering data rate and
latency predictions for mobile applications. In this context, a
continuous data flow for the multi-dimensional mobile network
twin is acquired using a massive, multimodal measurement
campaign enabled by road and rail-based vehicles. This ever-
growing database is utilized to analyze the KPI requirements of
selected vehicular applications.

For an example ToD target zone, it is shown that a multi-
Mobile Network Operator (MNQO) approach increases the KPI
fulfillment of direct control ToD from approximately 70 % to
90 % compared to a single MNO. By further restricting the ToD
zone and combining two MNOs, a ToD-ready zone with 100 %
fulfillment of the KPIs is reached.

I. INTRODUCTION

Future vehicular applications rely on reliable and fast
mobile networks, competing with an ever-growing demand
by regular users [1]. Service levels are commonly not
guaranteed in current 5G mobile networks, whereas client-
based intelligence is needed to improve system reliability.
However, typically, application domains lack the necessary
expert knowledge. For this reason, a digital mobile network
twin system is proposed in this paper. As shown in Fig. 1,
city-wide real-world mobile network measurement data from
multi-modal traffic systems is fed into the twin’s multiple
layers providing expert knowledge to applications as a
service. Consequently, the leveraged information can be
used to avoid critical situations and improve application Key
Performance Indicator (KPI) compliance. That can be based
on a domain-specific or a joint twin-domain interaction like,
e.g., communication-aware mobility for in-advance trajectory
planning.
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Fig. 1: Overview of a multi-layer smart city digital twin,
focusing on the mobile network layer part for 5Sth Generation
of Mobile Communication Networks (5G) networks providing
expert insight to applications with the help of acquired real-
world measurement data.

In the mobile network layer, multi-MNO networking
decisions can be assisted, multiple KPIs like the achievable
latency and data rate at a specific location can be predicted,
and a wide-area coverage estimation can be given based on
in-depth data analysis. This layer is among other processing
data containing reference signals like the Reference Signal
Received Power (RSRP) and Reference Signal Received
Quality (RSRQ) but also results of active measurements
like the achieved data rate at certain locations. Overall
a multi-dimensional map with spatiotemporal data is
constructed. Examples of future vehicular mobile network-
based applications are Communication-Based Train Control

2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.




 @InProceedings{Schippers2023a, Author = {Hendrik Schippers and Stefan Böcker and Christian Wietfeld}, Title = {Data-Driven Digital Mobile Network Twin Enabling Mission-Critical Vehicular Applications}, Booktitle = {2023 IEEE 97th Vehicular Technology Conference (VTC-Spring)}, Year = {2023}, Address = {Florence, Italy}, Month = {jun}, } 


(CBTC) and Tele-Operated Driving (ToD). These require a
set of specific KPIs to be full-filled all the time to work
without interruptions [2], [3]. With the help of a full-stack
digital twin, combining knowledge of multiple twin domains,
these requirements could be predicted or even guaranteed.

The remainder of the paper is structured as follows: After
discussing related works in Sec. II, the measurement approach
for the data feeding the digital mobile network twin is de-
scribed in Sec. III. Afterward, an overview of the methodolog-
ical aspects is given in Sec. IV. Detailed results concerning
instantaneous mobile network KPI predictions, selection of
proper Operational Design Domains (ODDs), and multi-MNO-
networking are presented in Sec. V. Finally, a conclusion and
a brief outlook is given in Sec. VL.

II. RELATED WORK

The related work part of this paper is divided into mobile
network digital twin concepts and Machine Learning (ML)
methods as part of the real-world simulation by digital twins.

A. Digital Network Twin Concepts and Usage

There is an emerging number of application areas for digital
twins [4] and an exponential rise in publications covering
digital twins [5]. Digital twins enable faster, safer and more
cost-effective prototyping and optimization of products and
systems [5]. One area for digital twins is mobile network
behavior simulation, planning and prediction [6]. In [7], the
advantages of a digital twin able to emulate 5G networks are
discussed: With the help of a potent digital twin, a faster
deployment by previous simulation and continuous monitoring
and optimization of the network functions could be reached.
That is why digital twins will also be an essential part of the
future 6G networks [8].

B. Machine Learning for Non-Uniformly Distributed Data
Sets

For meaningful mobile network KPI predictions, capable
ML is needed. In our previous works, we gained extensive
experience leveraging ML techniques for network-related
predictions [9], [3]. In the case assessed in this paper,
predictions for highly non-uniform data sets need to be
considered. Common ML approaches for supervised learning
assume uniform data set distributions. In the case of non-
uniform data sets for supervised learning tasks and a model
with a fixed loss function, either the data occurring with
a higher probability has to be under-sampled for training,
or the data occurring less often has to be over-sampled
to get a uniform distribution for training synthetically
[10]. Otherwise, the resulting model performance could
deteriorate, depending on the exact use of the model. An
algorithm for over-sampling by creating synthetic samples
for classification tasks is Synthetic Minority Over-sampling
Technique (SMOTE) [11]. In the case of regression tasks,
Synthetic Minority Over-Sampling Technique for Regression
with Gaussian Noise (SMOGN) can be utilized [12]. Both

algorithms create new samples by combining the values in
the vicinity of the feature space of each new sample in the
lower training sample density regions.

Low-density regions in the training set feature space are
often exceptional cases or anomalies that can not be general-
ized onto the whole data set. That is why the resulting labels
of these samples can commonly not be predicted by a single
strong learner. Instead, ensemble learners need to be utilized.
By combining trained decision trees additive, several weak
learners are combined into a strong learner, called boosting.
Xtreme Gradient Boosting (XGBoost) is such a tree-based
boosting method. It is a scale-able and high-performance
ML method [13] originating to [14]. By minimizing the cost
function C consisting of a loss part [ dependent on the
prediction error and a regularization term €2 punishing the
complexity of the resulting model, an accurate prediction
model, simultaneously preventing over-fitting, is created.

N K
C=> Ufnyn) + >_Qts) (1)
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C is evaluated from iteration to iteration on the N training
samples. The loss part of C' is calculated by the sum of the loss
of each sample (¢, y,) based on the model output ¢, and
the ground truth value y,,. The regularization part is calculated
as the sum of the regularization term for every tree t; out
of K trees. Q(tx) punishes the number and the weights of
leaves. C' is altered in the exact implementation to allow for
an efficient calculation [13]. The resulting model of decision
trees is evaluated by calculating the sum of the individual
results of the trees, enabling reliable common and special case
predictions.

III. PROPOSED MOBILE NETWORK DIGITAL TWIN
APPROACH FOR APPLICATION SERVICES

This work proposes the mobile network layer of a smart city
mobile network twin architecture capable of providing expert
knowledge of mobile networks to future applications. It relies
on real-world input data to predict unseen events and control
entities to improve overall system performance. As shown in
Fig. 2, real-world and virtual-world objects are combined in a
digital twin interface.

Real-world measurements of suspension railroad and waste
collection vehicles are automatically inserted into the twin’s
intrinsic database with the help of the Connectivity Monitor
(ConMon) application developed for this purpose. This way,
the quality of public 4G and 5G Non-Standalone (NSA)
networks is frequently monitored, and the twin is updated.
Based on the accumulated data, specifically developed algo-
rithms provide services for external applications like ToD or
CBTC. This paper focuses on predictive QoS for the KPIs
latency and data rate. The spatiotemporal predicted latency
and data rate [9] combined with a proper ODD selection
enables communication-aware mobility by exposing the pre-
diction results to external applications needing to comply
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Fig. 2: System overview of the data-driven digital mobile network twin developed in this paper.

with strict KPI constraints. In [3], the data rate prediction
for ToD applications based on multi-dimensional Individually
Tuned Radio Environmental Maps (IREMs) has already been
discussed. These MNO-specific REMs are constantly updated
within the digital twin and form the core of the virtual radio
environment simulation. Traffic and network simulation data
can be included in these Radio Environmental Map (REM)
layers to improve the simulation accuracy further. Virtual
end-to-end KPI predictions relying on ML methods and a
careful feature selection and preprocessing step are fed with
the data of the REMs. If specific REM data is unavailable,
instantaneous predictions for KPI simulations, as in [9], are
possible. In the future, the discussed simulations will be
extended by an energy demand modeling dependent on the
radio channel.

Furthermore, this system could also be utilized for SG campus
networks. In this case, not only can the mobility of smart city
applications be managed, but also autonomous or tele-operated
logistics vehicles and production robots. Finally, the gained
knowledge and control of the mobile network via the twin
can be visualized to the user in a condensed form with the
help of a Control Panel and User Interface (UI) entity.

IV. METHODOLOGY OF THE MEASUREMENT CAMPAIGN
PROVING DATA FOR THE PROPOSED DIGITAL TWIN

The proposed data-driven digital mobile network twin sys-
tem can process multi-modal measurements to comprehen-
sively cover the Dortmund city area. As shown in Fig. 3, two
variants of measurement equipment have been developed. The
first is based on commercial smartphones equipped with a ca-
pable measurement application. This ConMon application au-
tomatically measures the mobile network quality and regularly
reports the results to the digital twin. Within the scope of a
cooperation with the local waste disposal company, six smart-
phones equipped with ConMon are simultaneously installed in
garbage collection vehicles. The phones are vertically mounted
on the windshield of the vehicles. By systematically emptying

the garbage cans of each household, it is guaranteed that a
good exploration of the city area is reached and a frequent
update of the measurement results is performed. The garbage
collection vehicles repeat their measurement sectors every two
weeks. These are fixed and mostly adjacent to each other, as
shown in Fig. 4. Consequently, to cover all MNOs in all sectors
of the target area, the used SIM cards are frequently exchanged
between vehicles.

Additionally, an embedded measurement equipment for
outdoor purposes has been developed. It is based around a
System on a Chip (SoC), connected to a 5SG modem and a
Global Navigation Satellite System (GNSS) module providing
accurate location information. The modem is connected to
a vehicular 4x4 Multiple Input Multiple Output (MIMO)
and GNSS antenna. As visible in Fig. 3, extensive shielding
measures have been taken to protect the GNSS signal from
USB3 irradiation. This equipment is installed on the local
suspension railroad, as shown in Fig. 3 on the bottom right.
The suspension railroad is autonomously driving on dedicated
suspended tracks, which could - like other rail systems -
otherwise not be covered by garbage collection vehicles.
This multi-modal approach ensures a superior coverage of
the target area compared to single-vehicle approaches. In the
future, it is planned to extend the measurements further to
cover an even larger area of the city.

The measurement applications are set up to measure a
multitude of parameters, as listed in Tab. I. These indicators
can be divided into passive and active indicators. While
the acquisition of passive indicators like reference signals is
comparably fast and does not require any data transmissions,
active parameters like the data rate rely on energy-intensive
measurements taking up to several seconds to perform. Passive
parameters can be further divided into time-varying reference
signals and cell-specific parameters, which are fixed for each
cell. Furthermore, other non-mobile network-related parame-
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Fig. 3: Demand-driven connectivity measurement approach for
application in multi-modal traffic systems to realize a data-
driven digital mobile network twin in the Dortmund city area.

ters like the GNSS location and time are also logged.

More elaborate active measurements are executed less fre-
quently to reduce the environmental impact. Data rate mea-
surements that are even more impact-full on the shared mobile
channel are further reduced compared to latency measure-
ments, see Fig. 4. Additional measures to save energy and
dispense unnecessary measurements are adopting the measure-
ment frequency by the current velocity and the interruption
of active measurements if the current location can not be
accurately determined.

As described in Sec. IV, the measurement vehicles cover
a set measurement sector each working day. This procedure
results in a daily driven distance of more than 200km.
The driven trajectories are part of the systematical garbage
collection, and thus it is guaranteed that a good exploration of
the city is reached by every driven kilometer. Mobile network
measurements frequently cover over 1300 km of the Dortmund
city area. The measurements consist of over 17000 passive
reference signal measurements every day, as shown in Fig. 4.
By extrapolating the number of measurements per day, it
becomes clear that the scope of the measurement campaign is
massive and can be utilized to adequately feed a digital twin
of the mobile network in the target area. Coverage of over
70 % is already reached after approximately three months of
measurements (80 m grid). An even higher coverage has been
reached depending on the needed resolution or cell width of
the measurements.

V. RELIABILITY EVALUATION FOR REMOTE CONTROL
APPLICATIONS IN THE DORTMUND SMART CITY AREA

The results of the measurement campaign shall be evaluated
in the scope of a case study about Tele-Operated Driving (ToD)
and Communication-Based Train Control (CBTC) as examples
of smart city applications. As described in [3], concerning the
5G Automotive Association (SGAA), ToD requires a latency
from as low as 20ms in high speed direct control

TABLE I: Parameters and Repetition Rate of ConMon Application.

Parameters Description and Interval

Passive Network Parameters
RSRP, RSRQ, SINR, SS-RSRP,
SS-RSRQ, SS-SINR, RSSI, CQI, TA,
neighboring cell information,

Every second & on change

Time-varying reference signals
for 4G and 5G cells

Bandwidth, frequency, cell index,

physical cell index, tracking area code Cell-specific parameters

Active Parameters Every 5 seconds

Latency ICMP latency to 5 servers

Up- & downlink, TCP & UDP,

Data Rate Varying file sizes for TCP

Other Parameters Every second

Device, location and
context information

GNSS location, velocity, bearing, de-
vice name and status, timestamp

and up to 300ms in slow driving indirect control
scenarios. This paper assumes a value of 100 ms for urban ToD
scenarios. In [2], a maximum latency of 100 ms that needs to
be reached for 99.999 % of the time in a configuration of two
independent connections at the ends of the train [2] is named
for CBTC to be required. These performance requirements are
shown in Tab. II. Summarized, CBTC with fewer degrees of
freedom is slightly less demanding for the mobile network as
ToD.

In contrast to CBTC, one or multiple live video feeds in
combination with precise steering capabilities are needed for
ToD requiring higher data rate requirements especially in the
uplink direction. For the case study, four video streams with
a bit rate of 8 MBit/s each, as described in [15], are assumed
for direct control ToD, resulting in a required data rate
of 32MBit/s. With the help of the measurement approach
introduced in Sec. III, the feasibility of the more demanding
ToD shall be evaluated based on the KPIs latency and data
rate. As the downlink data rate requirements for ToD are much
lower than in the uplink direction, only the uplink data rate is
considered.

A. Measurement Results in the Target Area

The results of the measurement campaign yield that a
Round-Trip Time (RTT) of under 100ms needed for ToD
is reached over 98.2% to 98.9% of the cases, depending
on the MNO. The distribution of the minimum RTT of four
subsequent ping measurements varies, especially in the range
over 40ms, resulting in more high latency occurrences at
MNO B, which is also depicted in higher percentiles (see

TABLE II: Application requirements for Tele-Operated Driving
(ToD) and Communication-Based Train Control (CBTC).

Data Rate
Application Latency Reliability Uplink Downlink
CBTC [2] 100 ms 99.999 % 30 - 150kbit/s
Direct ToD [15] ~100ms  99.999%  3-50Mbit/s  0.25-5Mbit/s
Indirect ToD [15] 300 ms 99 % 8 - 30 Mbit/s < 0.3 Mbit/s
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Fig. 5). RTT measurements to four public Domain Name
Servers (DNSs) (8.8.8.8, 8.8.4.4, 1.1.1.1 and 1.0.0.1) via
the ping command were conducted to exclude errors due
to individual latency anomalies for a specific server. The
minimum RTT of four subsequent ping measurements is
utilized in this paper. In a dual-connectivity configuration via
MNO A and MNO B, the resulting reliability of a latency of
under 100 ms is 99.98 %, provided the latency at both MNOs
is statistically independent. This reliability still needs to be
improved in the future to comply with the requirements in [2],
[15]. However, in the case of ToD, in our measurements, the
assumed data rate constraints were more critical than latency
constraints.

B. Latency Prediction for Mission-Critical Mobile Applica-
tions

The latency and the data rate can be predicted based on
passively measured parameters. Mission-critical applications
must adapt to communication channel changes, especially
deterioration of the achievable data rate and latency. That is
why predicting the future latency could improve these appli-
cations’ Quality of Experience (QoE) by in-advance warning
the user if a high latency control phase is incoming. In this
case, for example, in a ToD scenario, the vehicle’s velocity
could be adopted to prevent a latency-triggered emergency
stop. Effectively, the failure probability of the system could
be reduced by the portion of correctly predicted samples.

As the latency is not equally distributed over its value range,
see Fig. 5b, SMOGN is applied to the training set of the ML
algorithm, which contains 80 % of the data. This procedure
aims to improve the prediction of rare high-latency cases and
reduce underestimations, as described in Sec. II. As rare high
latency events are not predictable by strong learners, XGBoost
is utilized in this work. Hyperparameters of the ML setup are
tuned using a random grid search approach with 20 iterations,
including a ten-fold cross-validation each. After this, the best

estimator is used to predict the unseen 20 % test set. The same
procedure is used for data rate predictions.

In Fig. 5d, the measured latency for MNO B is scattered
above the predicted latency of the test set. It can be seen
that the prediction accuracy decreases at high latency values.
This behavior can be explained by the rare occurrence of high
latency values in combination with effects beyond the radio
access network. Despite a potential high activity in the mobile
network being, e.g., reflected in a reduced RSRQ, an overall
higher activity in the backbone of the internet can not directly
be derived from measured values at the User Equipment (UE).
In the case of data rate predictions, the correlation between
the size of the label and the prediction error is smaller (see
Fig. 5¢).

In Fig. 6, the feature importance of the ML model is
evaluated by SHapley Additive exPlanations (SHAP). The
framework SHAP, introduced in [16], enables the interpre-
tation of the importance and the influence of features based
on their feature value. The features are ordered by their impact
on the model output from top to bottom. Regarding the data
rate prediction, the RSRP and SS-RSRP are highly important.
That could be due to the signal strength being an indicator
for possible Modulation and Coding Schemes (MCSs) and
such for the achievable data rate. However, features like the
time of day, the cell index and the timely averaged RSRQ,
which give insight into the mobile network utilization, also
gain considerable importance. These features representing the
utilization of the mobile network are even more critical for
latency predictions. Here, the time of day, cell index and
RSRQ all gain high importance. In [17], latency prediction
for LTE measurements by Random Forests (RFs) and decision
trees were performed, resulting in a single high dependence
on the RSRP with a mean impurity decrease of over 0.89.
This relationship cannot be shown in the performed 5G NSA
latency predictions.

When predicting the 5G latency, the Secondary Signal
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RSRP (SS-RSRP) and the Timing Advance (TA) behave partly
contrary to the case of the data rate prediction. The SS-RSRP
is not only an indicator for the modulation order but also an
indirect measure of the kind of environment. As the Internet
Control Message Protocol (ICMP) RTT measured with the
ping command uses a small payload size, the latency is less
dependent on a high MCS and, thus, less dependent on the
signal strength. Low SS-RSRP is much more likely to occur
in less crowded suburban or rural areas, which might result
in reduced latency. This connection also exists for the TA, as
a high TA is rarely measured in urban areas with an elevated
cell density.

The RSRQ can partly depict the mobile network activity, as
the signal quality decreases with the number of active users
in a cell. However, the RSRQ is only coarsely quantized for a
cell utilization prediction, and the cell utilization can fluctuate
strongly with time. That is why the averaged RSRQ over 5s
and 500s are added as features for the prediction model. The
averaging effect increases the resolution of this feature, which
could be why the ML model also relies on the 5s averaged
signal quality and the 500s averaged (SS-)RSRQ in addition

to the values directly obtained from the Android APL It
has also been tried to utilize the available neighboring cell
reference signals for latency predictions. As these parameters
only yield an insignificant feature importance, the influence of
neighboring cells is likely not strongly affecting the measured
minimum RTT in the considered target area.

C. Case Study: ToD Target Zones in a Multi-MNO Approach

Current consumer-oriented mobile networks are not pri-
marily designed to serve ToD applications. Consequently, at
some locations for both MNOs in the Dortmund ring area,
representing a potential ToD target zone, ToD requirements
are not met in our measurements. That could result in service
interruptions and emergency stops without further evolution of
the mobile network. KPI predictions can prevent the latter -
as shown in Fig. 5 - but a significant QoS restriction would
be unavoidable. That is why a ToD-ready zone is defined to
cover parts of the Dortmund city ring, where ToD requirements
could already be fulfilled when the data was gathered.

The concept of ODDs is used in the context of autonomous
driving [18] and is adopted for this paper to indicate ge-
ographical zones in which ToD requirements are fulfilled.
For each 25m grid cell, the direct ToD scenario’s data rate
and latency requirements are compared with the mean of the
measurements and are visualized in Fig. 7. While most parts
of the Dortmund city ring might be part of a future ToD ODD,
at the moment, a potential ToD-ready zone could, e.g., already
extend over parts of the northern ring, fulfilling the direct ToD
scenario’s requirements in a multi-MNO setup. In the ToD-
ready zone, both MNOs alone reach a coverage of 79 % in
our measurements. However, the combination of both MNOs
yields a coverage of 100 % in this scenario. Different scenarios
have been evaluated as results differ with the mobile networks
and the exact requirements. While the challenging Direct ToD
Scenario requirements can already be fulfilled in 90 % of the
grid cells in the ToD target zone with the network deployment
measured at the beginning of 2023, the less demanding CBTC

Data Rate Prediction High Latency Prediction Low

SS-RSRP SS-RSRQs
feature value feature value
SS-RSAP =ttt | SS-RSRQsp; ¢ -1
RSSI o e S rf— High Time of Da - -« «i High
model Y ——+ mggdel
RSRP ¢ eaefp—- - - output | | SS-RSRPs B . output
Time of Day . .--’—-—. Cell Index = _+_. .
Cell Index R . a SS-RSRQ e
Bandwidth=+* s = RSRQs00 - —p—
SS-SINR —‘- Timing Advance wr memee e
RSRQs005 - e - Bandwidth . ol
SS-RSRQsops *+  + sl SS-SINR -
Velocity e Timing Advances, B T
=20 -10 o 10 20 v -40 =20 0 20 ¥ 40
SHAP Value (Impact on Model Output) SHAP Value (Impact on Model Output)
Low High

Feature Value

Fig. 6: SHAP feature impact for MNO B on the model output
for the ten most important features comparing data rate to
latency predictions.



—
Scattered areas L
requiring network §

optimizations '\

Direct ToD Scenario

M Requirements met at MNO A

M Requirements met at MNO B

M Requirements met at both MNOs
B Requirements not met at both MNOs

1 ToDTarget _'
Coverage depends Zone 7

) on reqlulremems

Combination of - > eToD—Ready

both MNOs Zone B

Coverage of the Considered Areas [%)]

Direct ToD Scenario Indirect ToD Scenario CBTC Scenario

I
32 Mbit/s 1]
100 ms ;

IUpIink Il

[fr I\
Fig. 7: Case study of a possible Tele-Operated Driving target
zone covering the Dortmund city ring and an already ToD-
ready zone for different scenarios. Compliance with KPI
requirements for both MNOs in a 25 m grid is evaluated.
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Scenario requirements are fulfilled in 100 % of the grid cells
in both the defined zones.

For realistic deployments, our methodology enables the
selection of ToD capable network areas, indicates areas re-
quiring further network optimizations and shows the potential
of combining multiple networks to increase reliability and
extend the area of potential ToD zones. Consequently, this
methodology might accelerate the deployment of ToD-capable
mobile networks.

VI. CONCLUSION AND OUTLOOK

This paper introduced a data-driven digital mobile network
twin enabling mission-critical vehicular applications by pro-
viding crucial mobile network KPI predictions. These spa-
tiotemporal predictions are a challenging but crucial task to
enable critical applications securely. Effectively predicted net-
work KPIs enable proactive adaptions of services and networks
to increase the overall QoS. Additionally, selecting proper ToD
ODDs in combination with multi-MNO approaches increases
the feasibility of future ToD applications.

Due to the promising results, it is planned to extend the
measurement campaign to additional data sources to cover
other times of day and mobility behaviors and improve pre-
diction accuracy. Especially the prediction of rare high latency
cases will need to be addressed to reliably prevent sudden QoS
degradations even more efficiently.

Further improvements of the achieved KPIs could be
achieved via network slicing and extended multi-MNO net-

working. However, advanced network planning and immense
network extension measures are needed for mass-market ToD
applications in extended areas. In the future, 6G multi-X
(X substitutes bands, radio access technologies, etc.) strategies
shall be evaluated to be used for mission-critical applications.
Whereas this publication concentrates on public mobile net-
works, future work may also consider dedicated private 5G
networks and apply the discussed REM-based digital twins to
them.

ACKNOWLEDGMENT

This work has been supported by the Federal Ministry of Transport and
Digital Infrastructure (BMVI) in context of the project Virtual integration of
decentralized charging infrastructure in cab stands under the funding refer-
ence 16DKVMOO06B and by the Ministry of Economic Affairs, Innovation,
Digitalization and Energy of the state of North Rhine-Westphalia (MWIDE
NRW) in the course of 5Guarantee under grant number 005-2008-0046.

REFERENCES

—

[1] Ericsson, “Ericsson mobility report november 2022,” Stockholm, Swe-
den, Report, Nov. 2022.

[2] ETSI, “ETSI TR 103 442 V1.1.1,” ETSL, Tech. Rep., May 2016.

[3] H. Schippers, C. Schiiler, B. Sliwa, and C. Wietfeld, “System modeling
and performance evaluation of predictive QoS for future tele-operated
driving,” in 2022 IEEE International Systems Conference (SysCon), Apr.
2022, pp. 1-8.

[4] F. Tao, H. Zhang, A. Liu, and A. Y. C. Nee, “Digital twin in industry:

State-of-the-art,” IEEE Transactions on Industrial Informatics, vol. 15,

no. 4, pp. 2405-2415, Apr. 2019.

M. Singh, E. Fuenmayor, E. Hinchy, Y. Qiao, N. Murray, and D. Devine,

“Digital twin: Origin to future,” Applied System Innovation, vol. 4, no. 2,

p. 36, May 2021.

[6] Y. Wu, K. Zhang, and Y. Zhang, “Digital twin networks: A survey,’
IEEE Internet of Things Journal, vol. 8, no. 18, pp. 13789-13 804, Sep.
2021.

[7]1 H. X. Nguyen, R. Trestian, D. To, and M. Tatipamula, “Digital twin for

5G and beyond,” IEEE Communications Magazine, vol. 59, no. 2, pp.

10-15, Feb. 2021.

T. Wild, V. Braun, and H. Viswanathan, “Joint design of communication

and sensing for beyond 5G and 6G systems,” IEEE Access, vol. 9, pp.

30845-30857, Feb. 2021.

B. Sliwa, H. Schippers, and C. Wietfeld, “Machine learning-enabled data

rate prediction for 5G NSA vehicle-to-cloud communications,” in 2021

IEEE 4th 5G World Forum (5GWF), Oct. 2021, pp. 299-304.

[10] Y. Yang, K. Zha, Y.-C. Chen, H. Wang, and D. Katabi, “Delving into
deep imbalanced regression,” in Proceedings of the 38th International
Conference on Machine Learning, ser. Proceedings of Machine Learning
Research, vol. 139. PMLR, Jul. 2021, pp. 11842-11851.

[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321-357, Jun. 2002.

[12] N. Kunz, “SMOGN: Synthetic minority over-sampling technique for
regression with gaussian noise,” PyPI, 2020.

[13] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD *16. New York, NY,
USA: Association for Computing Machinery, Aug. 2016, pp. 785-794.

[14] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Ann. Statist. 29(5), Apr. 2001.

[15] T. Linget, “C-V2X use cases volume II: Examples and service level
requirements,” SGAA Automotive Association, Techreport, Oct. 2020.

[16] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on
Neural Information Processing Systems, ser. NIPS’17. Red Hook, NY,
USA: Curran Associates Inc., Dec. 2017, pp. 4768-4777.

[17] A. S. Khatouni, F. Soro, and D. Giordano, “A machine learning
application for latency prediction in operational 4G networks,” in 20719
IFIP/IEEE Symposium on Integrated Network and Service Management
(IM), Apr. 2019, pp. 71-74.

[18] 5GAA, “Safety treatment in connected and autonomous driving func-
tions report,” SGAA Automotive Association, Tech. Rep., Sep. 2020.

[5

[t}

[8

—

[9

—



