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Abstract—The usage of public mobile radio networks is
steadily increasing. At the same time, the number of new and
future smart city applications that rely on reliable and fast mobile
data connections based on public mobile networks is rising.
In particular, mission-critical smart city applications require
continuous and reliable mobile network connectivity. However,
the fulfillment of KPIs is not given at all locations and varies
over time. Thus, use-cases like tele-operated driving profit from
and, in some cases, even depend on spatiotemporal connectivity
data. Indirectly, connectivity data can also be utilized to calibrate
and improve network planning approaches for future network
technologies, such as classical ray tracing or innovative data-
driven channel modeling approaches.
Massive data acquisition is needed to cover vast city-wide areas
like the city of Dortmund. Therefore, this paper discusses a sys-
tem that enables a dedicated, continuous and systematic measure-
ment campaign to solve this challenge. These measurements are
realized by a fully automated open-source monitoring application
deployed in multiple vehicles of the local waste disposal company,
enabling continuous and city-wide data collection. The initial
results of this measurement campaign indicate that up-to-date
data is crucial for reliable data-driven services.
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I. INTRODUCTION

Emerging mobile network applications require exact
knowledge of the achievable Key Performance Indicators
(KPIs) at specific locations and times to guarantee mission-
critical services. Some, like Tele-Operated Driving (ToD), are
even directly impacting human life if mobile network-based
challenges are not handled appropriately, e.g., necessitating
emergency braking. Use cases like environmental monitoring,
traffic control and critical energy grid applications need
their portion of the mobile spectrum, too, in order to
work correctly. The available network resources are shared
between all mobile cell users and applications. Thus, the
utilization on the one side and the forthgoing extension of
the mobile network on the other side must be considered
to assess probable compliance with required KPIs. That is
why these applications need to be supplied with current
Radio Environmental Map (REM) data to consider changes
in demand and network expansion before deployment.

Mobile networks are exposed to many influencing factors;
thus, predicting KPIs of mobile networks is a challenging
task with many possible inputs. As shown in Fig. 1, these
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Fig. 1. Public mobile network temporal development in vital smart city en-
vironments in the area of the city of Dortmund (Map data: © OpenStreetMap
contributors, CC BY-SA).

are not only location-based and utilization-dependent. Rather,
mobile network KPIs change over time. This change includes
technical aspects such as frequencies used and available
technologies, but also user density and user behavior.
Mobile Network Operators (MNOs) strive to ensure an
ever-improving mobile network quality dependent on user
behavior and keeping costs minimal. While new cell towers
are constructed, existing cells are upgraded to be capable of
5th Generation of Mobile Communication Networks (5G)
Non-Standalone (NSA). Even 5G Standalone (SA) networks
are available in some locations. With the introduction of
millimeter-Wave (mmWave) frequencies, even higher data
rates than with current frequency range one cells could
be reached within a comparably small distance to the
corresponding cell.
At the same time, users’ habits are changing over time. As
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digitization advances across almost all industries, more and
more people work from home or on the move. This change
in work routines could have an impact on the utilization of
mobile networks near main traffic routes. The introduction
of bike lanes and the redesign of road networks in urban
areas might also change the use of mobile networks. Newly
constructed roads and buildings further affect the propagation
path of cellular networks by reflecting and attenuating the
signal. New shaded areas could emerge, while the coverage of
other areas will improve. While these changes are relatively
slow, temporary events like sports competitions or music
festivals have an immediate impact on the observed local
Quality of Service (QoS). All these influences need to be taken
into account for precise spatiotemporal prediction of mobile
network performance. Therefore, a static REM, measured at
a specific point in time is insufficient. Instead, there must
be an update process that considers the changing environment.

The remainder of the paper is structured as follows. After
discussing related work on mobile network monitoring appli-
cations in Sec. II, the approach for a holistic mobile network
monitoring and prediction system is described in Sec. III. Af-
terwards, an overview of the methodological aspects is given
in Sec. IV. Finally, detailed results of the first measurements
are presented in Sec. V.

II. RELATED WORK

A. Existing Measurement Approaches for the Determination
of Mobile Network Quality

In the past, various studies were conducted concerning the
quality of mobile networks. However, there is no comprehen-
sive database available that can spare the process of exhaustive
measurements. There are several measurement applications
that can be used to measure some parameters of mobile
networks. Tab. I compares several logging applications for
measuring the quality of mobile networks based on their
measurement capability, cost, and ability to export data.

The Android application SigCap is a free-to-use mobile
network logging application that can measure passive param-
eters in combination with the location of the device. The
measured data can be exported or uploaded to a server [1].
In combination with FCC Speed Test, which can perform
data rate measurements, both passive and active parameters
can be measured and exported [1]. However, FCC Speed
Test is not available outside the US (status November 2022),
as it is part of a project to evaluate mobile networks in North
America. For German users, the German federal network
agency published the Broadband Measurement app [9].
It is free-to-use and can measure data rate, latency and the
network technology. However, it cannot export the data to
an easy-to-process format, and its passive measurements are
limited. Additionally, simultaneous logging with two apps in
an automated measurement process is complex to control.
Open Signal is a free to use Android application capable
of performing active data rate, latency tests, and passive
signal measurements in one application. The acquired data

is accumulated on an Open Signal server and can be
displayed in the mobile application. However, there is no
detailed Reference Signal (RS) view or an option to export
data to an automatically processable format. Although the par-

TABLE I
COMPARISON OF SELECTED EXISTING MOBILE NETWORK MEASUREMENT

APPLICATIONS AND SYSTEMS.

Free Measurements Data
Application Use Passive Active Export

Broadband
Measurement [2] ✓ (✓) ✓ ✗

CellMapper [3] ✓ ✓ ✗ ✓

FCC Speed Test [4] (✓) ✗ ✓ ✓
NetMonster [5] ✓ ✓ ✗ (✓)

Network Signal Guru
(NSG) [6] (✓) ✓ ✗ (✓)

Open Signal [7] ✓ (✓) ✓ (✓)

SigCap [1] ✓ ✓ ✗ ✓
CNI-Cell-Tracker [8] ✓ ✓ ✓ ✓

tially commercial Android application Network Signal
Guru can access advanced passive logging parameters with
root privileges, it is not free to use if data needs to be exported.
In this case, a paid subscription is required. This application
cannot perform realistic speed tests of the data rate on the
application level. A free alternative for measuring passive
network indicators is NetMonster. It is an Android ap-
plication based on the open-source NetMonster library [5].
While the app can only monitor passive cell information, the
library can be used to perform measurements by a custom app
and exposes cell data provided by the Android API.

To conclude, other than with a self-developed Android
application [8], there is no possibility to analyze both active
and passive measurements in an existing application known to
the authors of this paper. That app is upgraded to be used for
automatic measurements (see Sec. IV).

B. Model Drift and KPI Prediction in a Mobile Network
Context

Machine Learning (ML) depends on the quality and gen-
eralizability of the training data. If the association between
features and labels changes, but also if the distribution of
dependent or independent variables changes, the performance
may decrease or the model may even become unusable. In this
case, additional or another training of the model is needed [10].
Changes in the distribution of the data used in an ML model
can lead to model drift. Model drift can be distinguished
into concept drift and data drift. While concept drift is a
change in the distribution of the observed data [11], data drift
reflects the change in the independent variables of the model.
Therefore, it is important to recognize data drifts [10], [12].

In [8], the cross-scenario performance of data rate pre-
dictions was analyzed. An ML model was trained using
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Fig. 2. Developed measurement system used to measure and continuously monitor 5G mobile network performance in the area of the city of Dortmund.

data from one scenario at one site. In the second step, the
trained model was used to predict the achieved data rates
in another scenario. The results show that the cross-validated
model usually performs better than a model trained on another
scenario. This observation suggests that the data distribution
is different at different locations, leading to a deterioration in
the performance of the model. Despite this effect is not due to
time-related model drift, it shows that KPI prediction models
for mobile networks have limited generalizability. Thus, model
drift might also significantly influence mobile network data
rate predictions.

III. APPROACH TO THE MEASUREMENT SYSTEM
ARCHITECTURE

A complete measurement system has been developed from
mobile network data acquisition to server-based automated
evaluation. The system overview is illustrated in Fig. 2.
Measurement data based on crowd-sensing sessions or
dedicated and systematical measurements are transferred to
a dedicated database. The measurements can include passive
indicators like RSs (e.g. Reference Signal Received Power
(RSRP), Signal to Interference and Noise Ratio (SINR)),
general cell information and active measurement results like
the achieved data rate and latency. Furthermore, the location,
velocity, bearing angle and device-specific information are
transmitted. The measurement devices can be smartphones,
dedicated measurement kits or even NarrowBand Internet
of Things (NBIoT) devices. Different measurement users
legitimate themselves at the database server with a username
and password combination, which is mandatory to upload
data. The upload is implemented via an HTTPS link only
when no active measurement is performed. To further protect
the database from erroneous data and falsification attacks,

the data is filtered before it is inserted into the database.
Additional steps against falsification attacks described in [13]
could be implemented in another validation iteration.

Based on the collected data, REMs are repeatedly generated
and updated. These form the basis for further data studies like
coverage estimations and reconciliation with given coverage
maps. Due to the REMs containing passive and active mea-
surements, prediction models for the active parameters, like
the data rate can be built with the help of ML. To accomplish
this, passive features must first be analyzed to understand the
needed spatial feature resolution [14] and individual feature
importance [8].

In the second step, the obtained knowledge can be used to
select locations for future network-dependent applications or
restrict the area of use by predicting the QoS requirements
of the individual use cases. For example, ToD or the tele-
operation of drones requires a fixed minimum data rate and a
maximum tolerable latency for the video feed and the control
channel [14]. Both could be predicted based on previous
measurements in the target area. Feasible routes with a reliable
data connection could then be pre-planned [15]. Missing
measurements in the mission area could be at least filled with
the help of ray tracing or DRaGon [16] based systems that
can be calibrated on the measurement data.

To ensure the quality of the collected data and even improve
its accuracy, external data sources are used to re-conciliate
the obtained data. One example of external data sources
are the OpenData portal of the city of Dortmund [17]
and the Bundesnetzagentur [9], both providing location
information for existing mobile cells.

To sum up, the developed setup allows for new business
cases like connectivity data as a service, speeding up the
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Fig. 3. Measurement device attached to the windshield of a garbage collection
vehicle of the Dortmund waste collection company and exemplary repeating
daily target areas (Map data: © OpenStreetMap contributors, CC BY-SA).

introduction of new products and services. With the help
of precise connectivity data provided by a web Application
Programming Interface (API), mobile communication-based
businesses could be planned more reliably. Users would benefit
from the optimized QoS novel applications could provide.

IV. METHODOLOGY OF THE MEASUREMENT CAMPAIGN
WITH DEDICATED VEHICLES

The measurement application already introduced in [8] has
been improved and updated to be used in an automated mea-
surement setup in combination with the explained measure-
ment system (see also Sec. II). Six Measurement smartphones
with the measurement application installed are permanently
attached to a garbage collection vehicle as shown in Fig. 3
to cover a wide area in Dortmund regularly. Every day, each
vehicle targets a dedicated area, which repeats after two weeks.
After three repetitions, the phones are switched to another ve-
hicle to extend the measurement area. While the measurement
system is capable of processing arbitrary measurements from
different users, this method achieves systematic and mutually
comparable measurements in a fixed area.
As the measurement smartphone is attached to the center of the
windshield in the cockpit, the attenuation through the vehicle is
kept to a minimum, and the crew can react to possible difficul-
ties with the measurement process. The phone is connected to
the onboard 12 V DC system. During the measurement breaks,
the phone enters a low power state, which enables it to survive
over approximately six days without a power supply. That is
partly possible because the app can be run with device admin
privileges in lock task mode. If the garbage collection
vehicle leaves the service yard area, the measurement is auto-
matically started utilizing geofences. The measurement is
stopped shortly after reentering the geofence of the service
yard. Afterward, collected data is automatically uploaded to

MNO 2
MNO 3

MNO 1

Detailed in Fig. 5

Fig. 4. Scatter plot of the measured Reference Signal Received Power
(RSRP) of the first three months of the measurement campaign for Mobile
Network Operator (MNO) 3 and base station locations based on openData
of the city of Dortmund [17] and the Bundesnetzagentur [9]. The measurement
devices are carried on waste disposal vehicles (Map data: © OpenStreetMap
contributors, CC BY-SA).

the database via the mobile network. That prevents competing
network accesses between the measurement process and the
data upload.

The passive cell information is collected from three sources.
First, the Android APIs networking classes are manually
sampled regularly. Additionally, ”onChange”-listeners are set
up for cell information data. Finally, the observed data is
merged with data provided by the NetMonster library [5]
(see Sec. II).

The evaluation interval of passive and active parameters is
configured to depend on the movement speed. That keeps
the spatial measurement density per measurement session
constant and reduces the number of energy-intensive active
measurements. These would otherwise be unnecessarily stress-
ing the network, the measurement smartphone and the server
infrastructure. Furthermore, the logging interval is increased,
depending on the time, since the measurement smartphone has
moved significantly. The increase is designed to be low if the
movement break is short and increases quadratically with time,
as it becomes increasingly unlikely that the smartphone will
start moving again. Finally, logging stops if no movement
is detected for an extended time and the recorded data is
uploaded to the server.

V. RESULTS: IMPACT OF DRIFTING MOBILE NETWORK
ENVIRONMENTS

The running measurement campaign, in cooperation with
the local waste collection company, results in continuously
new measurement data.

A sample trace of a day in the measurement campaign from
one MNO looks as follows. After the vehicles have reached
their target area of waste disposal, the area is systematically
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Fig. 5. Selected Radio Environmental Map (REM) layers of measured active
and passive Key Performance Indicators (KPIs) for Mobile Network Operator
(MNO) 3.

traversed before being unloaded. After this, the cycle starts
a second time, which creates a dense cloud of measurements
on almost every road in the target areas. In Fig. 4, the RSRP
layer of the measured data is plotted together with base station
locations from external sources [17] and [9] in the area around
Dortmund city. It can be observed that even in the relative
vicinity of cell towers, the received signal strength can be
low due to shadowing. The measurements also show that the
RSRP can be as low as −120 dBm at some places in the
urban Dortmund city area. However, the RSRP is not the only
captured signal. In Fig. 5, a selection of REM layers for a
small portion of the area of Fig. 4 are shown. The parameters
are recorded for all three considered MNOs and can be divided
into passive and active. The combined information of all layers
is needed to train precise models for data rate predictions.

A. Observations From Long-Term Comparisons

In 2019, the authors of [19] measured multi-layer REMs in
the area of the Dortmund city ring. These measurements can
be utilized to make statements about the network expansion in
the last three years and if changes can be observed. In Fig. 6,
the RSRP layer of the REM measured in 2019 is compared
to the data of 2022. The received power mainly remained the
same in most parts of the city ring. On average, the RSRP
increased by 9 dB. Minor changes could be due to different
User Equipments (UEs) and measurement vehicles being used
in 2019 and 2022. However, at the northeastern part of the city
ring, the measured RSRP did improve by more than 20 dB.
This change might be due to a new mobile cell tower, which
has been built and will result in significantly higher data rates
in this area. From 2019 till now, all considered MNOs put a 5G
NSA network into operation. That can be modeled as another
RSRP REM layer (Synchronization Signal RSRP (SS-RSRP))
in this comparison, which was not present in 2019.

B. Performance of Machine-Learning Based Prediction of
Network KPIs

In [14], data rate predictions for future tele-operated driving
applications were conducted using well-tuned REMs based on
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recorded passive and active measurements. The results demon-
strated the feasibility of REM-based data rate predictions in
several German cities. However, the setup was not automated
to update the used data over time.

In Fig. 7, the impact of outdated ML models is shown. Using
Transmission Control Protocol (TCP) downlink LTE speed test
data from 2019 [19], a Random Forest (RF) based prediction
model with the same hyper-parameters is trained to predict the
data rate. Analogous to [19], the features RSRP, SINR, RSRQ,
Cell Quality Index (CQI), Timing Advance (TA), cell index,
velocity and payload size are used as features. If the model
is ten times cross-validated, the performance is comparable to
the results in [19]. The difference from the squared correlation
coefficient of 0.552 in [19] to the value of 0.54 can be
explained by the probably changed exact implementation of
the RF model and the fact that the frequency data used in
the prediction model of [19] is not available to the authors of
this paper. If the old model is used to predict the new data
rates, the score drops to 0.11, which is an unusable accuracy.
When a new model is trained with the same features and cross-
validated ten times, performance is improved by over 45 %,
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considering the Root Mean Squared Error (RMSE). However,
the performance is worse if compared to the performance of
the old model on the old data set. That is partly the case
because measured data rates in the Long Term Evolution
(LTE) networks of 2019 are overall lower than in conjunction
with today’s 5G networks. The 5G Synchronization Signals
(SSs) reflect the utilization and the modulation used in the 5G
part and therefore have a strong influence on the achieved
data rate. A slightly higher squared correlation coefficient
score is obtained if these SSs are also used. This only small
increase can be explained by the RF utilizing the cell index
as a substitute for the SSs. In summary, the demonstrated
outdated performance of the old model highlights the need for
continuous updates for spatiotemporal predictions of mobile
network performance. Data and prediction models must be
updated to keep track of drifting environments.

VI. CONCLUSION

The capability of mobile networks has changed considerably
in the last few years. Further improvements and changes
are to be expected. That is why known concepts like REM-
based predictive QoS that rely on measured mobile network
indicators need to be based on current data that is frequently
updated as changes are observed. These changes include
not only the expansion to new cellular sites, but also the
widespread deployment of 5G NSA, which drastically changes
the feasibility of potential cellular-based applications. In order
to ensure that future changes are detected in a timely manner,
this paper presented a holistic system architecture. By auto-
matically updating REMs on a server platform in combination
with a systematic and regularly repeated measurement process,
the current KPI of the mobile network can be monitored
and predicted. This system favors the feasibility of new
applications like ToD. It can also verify the availability of
adequate mobile internet connectivity to the general public,
identify opportunities for future improvements, and calibrate

known radio channel simulation algorithms. In the future,
further analysis will be conducted to fully exploit the growing
amount of data collected.
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