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Abstract—Radio channel modeling is one of the most fun-
damental aspects in the process of designing, optimizing, and
simulating wireless communication networks. In this field, long-
established approaches such as analytical channel models and ray
tracing techniques represent the de-facto standard methodologies.
However, as demonstrated by recent results, there remains an
untapped potential to innovate this research field by enriching
model-based approaches with machine learning techniques. In
this paper, we present Deep RAdio channel modeling from
GeOinformatioN (DRaGon) as a novel machine learning-enabled
method for automatic generation of Radio Environmental Maps
(REMs) from geographical data. For achieving accurate path loss
prediction results, DRaGon combines determining features ex-
tracted from a three-dimensional model of the radio propagation
environment with raw images of the receiver area within a deep
learning model. In a comprehensive performance evaluation and
validation campaign, we compare the accuracy of the proposed
approach with real world measurements, ray tracing analyses,
and well-known channel models. It is found that the combination
of expert knowledge from the communications domain and the
data analysis capabilities of deep learning allows to achieve
a significantly higher prediction accuracy than the reference
methods.
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I. INTRODUCTION

The ability to determine the received signal strength for a
given sender and receiver pair is one of the most fundamental
aspects for planning [1] and simulating [2] wireless networks.
Moreover, emerging mobile communication paradigms such as
anticipatory networking [3], [4] explicitly build upon using a
priori context knowledge for proactive network optimization.

However, the existing model-based approaches for path loss
determination heavily rely on abstractions and simplifications
of the radio propagation environment, which limits their signif-
icance for concrete real world scenarios. Ray tracing [5] aims
to overcome these limitations through explicit modeling of the
radio propagation environment. However, in many practical
scenarios, the required high resolution data about shapes and
materials of the obstacles might not be available, inherently
implying a significant degradation of the achievable model-
ing accuracy [6]. Fueled by the availability of computation
power, data sets, and algorithms, machine learning has started
to become an integral part of all areas related to wireless
networking [7]. Due to its inherent strength of learning closed
system descriptions of complex processes from measurable
features, it has also become a promising method for solving
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Fig. 1. Example application of the proposed DRaGon method for generating
RSRP REMs for three different MNO. The acquired radio channel knowledge
is aggregated in a multi-MNO map that provides the required information for
performing dynamic MNO selection at the application layer (Map data: ©
OpenStreetMap Contributors, CC BY-SA).

classical communication problems such as network simulation
[8] and radio channel modeling [9].

In this paper, we present the novel DRaGon method for ex-
tracting latent radio channel information from widely available
geographical data that builds upon the well-known strengths
of deep learning-based [10] image analysis. Following the
assumption that similar “looking” environments will show
similar radio propagation characteristics, DRaGon not only
relies on explicitly extracted features (e.g., the number of
building penetrations on the direct path between sender and
receiver) but also incorporates top and side view images
of the receiver environment within the prediction process.
Fig. 1 shows an example for the utilization of the proposed
method in the context of multi-Radio Access Technology
(RAT) networking. Hereby, DRaGon automatically transforms
the geoinformation input data into MNO-specific REMs of the
Reference Signal Received Power (RSRP). This information
provides the foundation for a multi-MNO REM that allows to
dynamically determine the serving MNO based on the current
user position.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, we present the novel
DRaGon method in Sec. III. Afterwards, an overview of the
methodological aspects is given in Sec. IV. Finally, detailed
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results of the achievable modeling accuracy and the general-
izability of the proposed method are provided in Sec. V.

II. RELATED WORK

Anticipatory mobile networking [3] is novel paradigm
in wireless communications that focuses on the exploitation
of context information for proactive network optimization.
According to a recent white paper [11] of the 5G Automotive
Association (5GAA), this form of predictive Quality of Service
(QoS) optimization will be one of the key enablers for future
connected and autonomous driving. However, while the vehi-
cles are able to measure the network quality at their current
locations, they are not able to determine the corresponding
information at the future locations along their trajectories
in advance. A promising data-driven solution approach for
closing these gaps is the utilization of REMs [12], [13] that
map geospatial locations to corresponding previously acquired
network context measurements.

Radio channel modeling — in addition to purely data-
driven approaches such as mobile crowdsensing — is an
important method for constructing the requried REMs. An
overview of the different classes of channel and propagation
models for vehicular communications is given by Viriyasitavat
et al. in [14]. In addition to simple analytical models —
that do not integrate explicit environment modeling — such
as Friis and Two-ray ground reflection, different methods
have been proposed to increase the significance of the results
for concrete evaluation scenarios. Empirical models, such as
the 3rd Generation Partnership Project (3GPP) Urban Macro
(UMa) [15] model, rely on real world measurement data for
specific radio propagation prototypes (e.g., urban, suburban,
and rural) and distinguish between Line-of-Sight (LOS) and
Non-line-of-Sight (NLOS) channel characteristics based on a
distance-dependent probability function. Deterministic channel
models [16] utilize environmental models for computing the
building penetrations in order to derive the total path loss by
superpositioning the effects of the obstructed path and the non-
obstructed path. Ultimately, computationally expensive ray
tracing techniques [5] utilize high resolution environmental
models for tracing the behavior of the emitted rays based on
models for the physical processes such as reflection and re-
fraction. In a comprehensive empirical analysis [2], Cavalcanti
et al. analyzed 283 vehicular networking papers from top-tier
conferences and journals. While only 83 of the 214 papers that
made use of radio propagation models specified which model
was used, the analysis revealed a clear dominance of simple
analytical models such as Nakagami, Two-ray ground, Friis,
and Rayleigh fading.

Machine learning has started to penetrate all areas related
to wireless communications. Consequently, different research
works have given a glimpse at the hidden potential of machine
learning-enabled radio propagation modeling. A comprehen-
sive summary of different disciplines, models, and applications
of machine learning in wireless networking is provided by
Wang et al. in [17]. In [18], Enami et al. present Regional
Analysis to Infer KPIs (RAIK), a method for RSRP prediction
through determining the most suitable path loss exponent of

a given channel model. For this purpose, the authors use a
Light Detection And Ranging (LIDAR) environmental model
from which statistical features, such as the percentage of the
areas covered by buildings, is extracted. A related approach
is proposed by Masood et al. in [19]. By combining evolved
Node B (eNB)- and User Equipment (UE)-specific features
with geographic information, the authors are able to achieve
an Received Signal Strength (RSS) Root Mean Square Error
(RMSE) of 6.2 dB in comparison to a ray tracing setup
serving as the ground truth. The authors of [20], utilize aerial
images of the environment between sender and receiver for
classifying the radio channel into urban, suburban, and rural
prototypes. For each of these, a specific path loss model is
then used for performing predictions. Thrane et al. propose
an even more consequent approach for the utilization of two-
dimensional geoinformation in [21]. Hereby, raw aerial images
of the receiver environment are utilized as input features for
a deep neural network that learns an environment-dependent
correction offset of a path loss model. This methodological
approach represents the foundation for the novel DRaGon
method.

III. MINING LATENT RADIO CHANNEL INFORMATION
FROM GEOGRAPHICAL DATA WITH DRAGON

Problem statement: Our overall goal is to determine the
RSRP at a specific receiver position pRX given the transmitter
position pTX. According to the 3GPP standardization [22], the
RSRP is calculated as

RSRP = PRX − 10 log10 (NPRB ·NSC) (1)

whereas PRX represents the received signal strength, NPRB is
the number of Physical Resource Blocks (PRBs), and NSC
is the number of subcarriers. NPRB can be derived from the
channel bandwidth B (e.g., 100 PRBs are available for 20 MHz
cells) and NSC is fixed to 12 for conventional Long Term
Evolution (LTE) systems.

However, as PRX is unknown, it is substituted with a generic
link budget term PRX = PTX − L + ∆L that allows us to
formulate

RSRP = PTX − 10 log10 (NPRB ·NSC)︸ ︷︷ ︸
Properties of the

communication system

− L︸︷︷︸
Channel
model

+ ∆L︸︷︷︸
ML-based
correction

. (2)

Hereby, PTX represents an Equivalent Isotropically Radiated
Power (EIRP) description of the transmitter antenna that
aggregates transmission power, antenna gains, and coupling
losses. With L being an analytical path loss estimation — we
utilize a 3GPP UMa B [15] model for this task — with respect
to pTX and pRX, machine learning techniques are leveraged to
learn a correction offset ∆L using geographical features. In
the following paragraphs, a detailed description of the data
processing pipeline is provided. A schematic illustration of
the system architecture model of DRaGon is shown in Fig. 2.

A. Data Preprocessing and Augmentation

The goal of the initial preprocessing phase is to prepare the
input data such that a three-dimensional model of the radio
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Fig. 2. Overall system architecture model of the proposed DRaGon signal strength prediction method.

propagation environment — which is capable of extracting
the determining features — can be constructed.

Radio propagation environment: Publicly available Open-
StreetMap (OSM) geoinformation is utilized as the main data
source for building the environmental model for the given
bounding box of the evaluation scenario. While the outlines
of the buildings — the dominant sources of signal attenuation
— are well captured within available OSM data, height infor-
mation is not very well represented. As an example, from the
9630 buildings of the urban subset of the Dortmund scenario
(see Sec. IV), only 78 are annotated with corresponding height
information. In order to close these gaps, we utilize available
LIDAR data for the German and Danish application scenarios.
For each OSM building, the building height is calibrated with
the corresponding data from the LIDAR data set whereas
the matching is performed based on the respective bounding
boxes.

In addition to the building-related radio propagation effects,
ground reflections also have an impact on the RSRP and need
to be considered. For this purpose, DRaGon incorporates data
from the Digital Elevation Model over Europe (EU-DEM)
[23] terrain profile that provides elevation data with 25 m cell
resolution and a vertical accuracy of 7 m RMSE.

Transmission power estimation: For the application of the
proposed approach, a major challenge is that information about
the transmission power PTX of the base stations — required
for Eq. 2 — is typically not publicly available. In order to
close this gap, we perform a transmission power estimation
step. Hereby, we aim to find the best fit of an UMa B path
loss model [15] to existing real world measurements (see
Sec. IV) of the received signal strength PRX. An example
for the fitting process is shown in Fig. 3. For each cell, the
estimated EIRP P̃TX is determined by minimizing the Mean
Square Error (MSE) of the N ground truth measurements and
the corresponding model predictions L using the objective
function

min
P̃TX

(
1

N

N∑
i=1

(
PRX,i − P̃TX + Li

)2)
. (3)

B. Data Fusion and Feature Extraction
The augmented data is then utilized for setting up a

Lightweight ICT-centric Mobility Simulation (LIMoSim) [24]

scenario. Although LIMoSim is actually a simulation frame-
work for ground-based and aerial vehicular mobility, we utilize
this unconvential method because of its rich environmental
data aggregation capabilities that allow us to fuse the different
data sources into a single methodological setup for further
processing. For each receiver position pRX, different types of
features are computed:

Receiver environment images: As one of its unique fea-
tures, LIMoSim provides a dedicated Encapsulated Postscript
(EPS) rendering engine capable of exporting vector screen-
shots of defined regions within the simulation scenario.
DRaGon utilizes this approach for incorporating the raw top
and side view images (examples are shown in Fig. 2) of the
receiver environment into the machine learning process. Each
top view image covers an area of 300 m×300 m with centered
receiver position pRX. A normalization of the image rotation
is performed such that the right axis always points towards
the base station. This parameterization is chosen with respect
to previous work [21], which also provides formal description
of the export procedure. For generating the side view images,
a simple direct path ray tracing is performed for determining
the intersections points with terrain and buildings. Within these
images, the receiver is vertically centered at the left edge and
different colors are chosen for buildings (black) and terrain
(gray). Finally, the vector images are converted into 64× 64-
rasterized representations Itop and Iside to allow their utilization
as Neural Network (NN) input features.

Numerical features: In addition to the images, several
numerical features are extracted from the LIMoSim scenario.
The aggregated feature vector x aggregates information from
different logical domains:
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Fig. 3. Example for the estimation of the cell-specific EIRP P̃TX by fitting
available real world measurements to an UMa B channel model.
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Fig. 4. Schematic illustration of the final deep neural network architecture.

• Relative locations: Absolute latitudinal and longitudinal
distances ∆lon and ∆lat of receiver and transmitter

• Direct path: Distance d between receiver and transmitter,
Number of building intersections Nobs, Indoor distance
dobs, Number of terrain intersections Nter, Terrain distance
dter

• Communication system: Bandwidth B, Carrier frequency
f , Transmission power estimation P̃TX

C. Deep Learning-Enabled RSRP Prediction
As illustrated in Fig. 4, the derived features are fed into

a deep neural network that consists of three sub-NNs, which
handle dedicated processing tasks. The feature NN is utilized
for processing the numerical features x using a sequence of
processing blocks that perform linear transformations of the
input data using the learned connection weights, followed
by element-wise Rectified Linear Unit (ReLU) activation and
batch normalization. In addition, the vertically concatenated
images I =

[
Iᵀtop, I

ᵀ
side

]ᵀ
are handled by the convolutional NN.

Each processing block of the pipeline consists of a convolution
layer with zero padding followed by ReLU activation, batch
normalization and 2 × 2 max pooling. The final flattening
of the two-dimensional input to the one-dimensional output
is performed by the final linear layer. The derivation of the
target variable ∆L is then performed using the prediction NN.
Finally, the RSRP is predicted using Eq. 2.

IV. METHODOLOGY

Evaluation scenarios: For the performance evaluation, we
consider real world measurements from different data sources:

• Vehicular measurements from the German city Dortmund
[8] in campus, urban, suburban, and highway environ-
ments with three MNOs (68314 data samples)

• Vehicular measurements from the German city Wuppertal
[4] in the networks of three MNOs (41113 data samples)

• Vehicular measurements from the Danish city Kopen-
hagen [6] in a campus environment (57586 data samples)

• Unmaneed Aerial Vehicle (UAV) measurements from the
Danish city Aarhus [25] (268534 data samples)
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Fig. 5. Determination of the deep learning hyperparameter configuration
using Bayesian optimization.

Validation methods: In addition to the real world measure-
ments, multiple validation methods are used as references:

• Conventional channel models such as Friis, Nakagami
(m = 2), and Two-Ray Ground

• Empirical channel modeling with 3GPP UMa B [15] and
WINNER II C2 NLOS

• Environment-aware models with Obstacle shadowing [26]
and Altair WinProp ray tracing

The machine learning evaluations are performed with
PyTorch and accelerated with an Nvidia Tesla K40M with
2880 Compute Unified Device Architecture (CUDA) cores.
For the training, the overall data set D is split into 80 %
training data Dtrain, 10 % test data Dtest, and 10 % validation
data Dval. For increasing the significance and repeatability of
our results, our methodological setup is provided in an Open
Source manner1. A summary of the resulting parameterization
of is shown in Tab. I.

TABLE I
FINAL CONFIGURATION OF THE DRAGON HYPERPARAMETERS

Hyperparameter Value

Stride 1
Dilation 1
Batch Size 128
Zero Padding 3
CNN Filters [32, 16, 16, 16, 10, 1]
Max Pooling [2, 2, 2, 2, 2, 2]
Kernels [5, 3, 3, 3, 3, 2]
Feature NN [256, 128, 64, 32]
Prediction NN [16]
Learning Rate 0.001
Weight Decay 0.0005
Optimizer Adam

V. RESULTS
In the following, a sequential approach for analyzing the

performance of the novel method is presented. After the
initial hyperparameter optimization phase, the performance of
DRaGon is evaluated on the Dortmund data set and compared
to the reference methods. Finally, the generalizability of the
proposed approach is discussed by taking the other evaluation
scenarios into account.

1The source code of the proposed DRaGon method is available at
https://github.com/melgeis/DRaGon
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Hyperparameter optimization: In order to find the most
suitable parameterization for DRaGon, Bayesian optimization
is applied using the wandb toolkit. Hereby, a probabilistic
model of the objective function is constructed and the rela-
tionship of the different hyperparameters is learned through
sequential integration of the achieved knowledge of previous
training runs. The parallel coordinate plot in Fig. 5 allows to
investigate the trends of the 213 investigated hyperparameter
combinations. In addition, it also illustrates the sensitivity of
the target variable with respect to the hyperparameter values.
It can be observed that the most important influence factors
are the number of convolutions as well as the depth and width
of the feature NN.

Performance comparison and validation: The behavior of
the absolute RSRP prediction error of the considered methods
is shown in Fig. 6 for the Dortmund data set. It can be seen that
major differences rather occur between different model cate-
gories than between the individual models themselves. While
the highest prediction accuracy (2.7 dB RMSE) is achieved
by the proposed DRaGon method, the ray tracing approach
shows a significantly higher prediction error (9.2 dB RMSE),
similar to the empirical methods that achieve 9.3 dB to 9.6 dB
RMSE. In compliance with [6], this observation shows that the
performance of the ray tracing approach is significantly limited
by the comparably coarse-grained OSM data. Moreover, in
our evaluations, ray tracing achieves an approximately four
times lower temporal efficiency than DRaGon. It is remarked
that the analytical models also make use of the transmission
power estimation for P̃TX (see Sec. III-A) and thus might be
optimistic towards the 3GPP UMa model. The conventional
channel models show a significantly lower prediction accuracy
as they do not account for the obstacles within the environ-
ment. Each of the considered methods achieves at least 33 dB
RMSE, which highly limits their practical applicability. For
DRaGon, it is further remarked that no significant differences
of the prediction accuracy were identified for different MNOs
and carrier frequency bands.

Generalizability: In order to analyze the generalizability of
the proposed method over different scenarios, multiple data ag-
gregation approaches are compared. While the scenario-wise
approach performs an individual split evaluation (see Sec. IV)
for each scenario, the global model is trained using 80 % of
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the aggregated data. Finally, a cross-scenario evaluation is
performed. For each of the i scenario subsets, Di is selected
as the test set Dtest. The remaining data sets jointly form the
training set Dtrain. Fig. 7 shows the RSRP prediction error for
the different data aggregation methods and evaluation scenar-
ios. The consequences of prediction errors highly depend on
the targeted use case: While RSRP underestimations can lead
to violations of regulation thresholds within network planning,
overestimations of the network quality can lead to inefficient
resource usage in anticipatory mobile networking. Although
it is well-known that the training data of machine learning
methods should show a high grad of versatility for achieving
good generalization [27], sometimes a better scenario-specific
behavior can be achieved by increasing the grade of locality of
the models. DRaGon shows no significant differences between
those two approaches as the scenario-wise and the global data
aggregation methods achieve a very similar behavior with zero
mean for all evaluation scenarios. For the generalization, the
most challenging method is the cross-scenario evaluation as it
reveals the structural differences between the training data sets.
As both German scenarios contain measurements from similar
environment types (urban, suburban, rural, highway), a com-
parably high cross-scenario prediction accuracy is achieved for
Dortmund and Wuppertal. In contrast to that, the Kopenhagen
data does only contain campus measurements with moderate
LOS dynamics and low vehicle speeds. As the cross-scenario
evaluation excludes this data subset from the model training,
the properties of the German radio measurements are overem-
phasized, leading to an underestimation of the less challenging
Kopenhagen environment. The Aarhus data set exclusively
contains UAV measurements at receiver heights up to 100 m.
As the elevation angle increases with higher flight altitudes,
the LOS probability is also increased. However, DRaGon is
not able to learn this aspect if only ground-based vehicular
measurements are utilized for the training. As a consequence,
DRaGon behaves pessimistically and underestimates the signal



strength.
It is remarked that the Dortmund and Wuppertal data sets of

[8] have been acquired using the native Android Application
Programming Interface (API) with a sampling interval of
1 s. As a consequence, there exists a measurement-related
inaccuracy in determining the receiver location even for perfect
Global Navigation Satellite System (GNSS) fixes. For the
highway track with maximum driven velocity of 150 km/h,
this error can be up to 42 m. Since the DRaGon approach is
sensitive to the quality of the geospatial information, future
work should utilize more precise GNSS sensors within the
data acquisition phase.

VI. CONCLUSION

In this paper, we presented the novel DRaGon method for
RSRP prediction through extracting latent radio propagation
information from geographical data. As demonstrated in a
comprehensive performance evaluation campaign, the combi-
nation of expert knowledge and machine learning allows to
achieve more accurate prediction results than existing methods
such as analytical channel modeling and ray tracing. It is
well-known in data science literature [27] that often, machine
learning models benefit more from additional training data
than from fine-tuning of the model hyperparameters. There-
fore, we aim to further increase the versatility and the quality
of our training data. In future work, we plan to utilize and
further improve DRaGon in the context of machine learning-
enabled network planning [28]. In addition we will consider
more lightweight machine learning models [29] for achieving a
better computational efficiency during training and inference.
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