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Abstract—The 5th generation of mobile communication net-
works (5G) introduced the concept of network slicing for enabling
multiple, diverging service types by providing virtually indepen-
dent communications within one physical network. While Ultra-
Reliable Low Latency Communication (URLLC) aims to provide
latency guarantees below 5 ms for mission-critical applications
such as Smart Grid as well as Industry 4.0, Enhanced Mobile
Broadband (eMBB) focuses mainly on high data rates. Thus, since
different Key Performance Indicators (KPIs) such as latency,
data rate or time-criticality need to be considered, the allocation
of resources between corresponding slices is challenging. This
work, therefore, aims to reduce uplink latency for URLLC
transmissions by deploying Proactive Grants to minimize the
impact of time-consuming scheduling requests and any negative
influence on other slices. Resources are allocated proactively by
base stations utilizing Machine Learning (ML) models trained
on real-world measurements. An experimental evaluation via an
Software-Defined Radio (SDR)-based physical testbed demon-
strates delay reductions towards the mission-critical threshold
while simultaneously increasing spectral efficiency. Compared
to Round Robin (RR)-based slicing, latency decreases by 49 %,
while maintaining a high throughput of 98 % in the eMBB slice.

I. INTRODUCTION

For the current generation of mobile communication (5G),
three heterogeneous service requirements are specified [1],
aiming for disparate Quality of Service (QoS) profiles. These
service types comprise according to [2]:

• Enhanced Mobile Broadband (eMBB):
High data rates within wide areas and hotspot scenarios.

• Massive Machine Type Communication (mMTC):
Low cost connectivity for massive amounts of devices
with low traffic volumes and medium delays.

• Ultra-Reliable Low Latency Communication (URLLC):
Latencies below 5 ms for mission-critical services.

As each service type requires a different strategy for re-
source allocation regarding timing and bandwidth, network
slicing emerged as key enabler, providing virtually indepen-
dent and isolated communications on top of a single physical
network, such as depicted in Fig. 1 for a modern urban envi-
ronment. Here, for example, applications requiring high data
rates typically consume as many Physical Resource Blocks
(PRBs) per timeslot as possible and utilize greater Subcarrier
Spacings (SCSs) for higher bandwidths. Conversely, latency-
critical applications commonly need less spectrum but readily
available time slots. For Long Term Evolution (LTE) (i.e. 4G),
several schedulers have been designed to distribute resources
fairly or consider device-specific Key Performance Indicators

(KPIs). However, scheduling is mostly based on best effort
while prioritization is limited to features such as Access Class
Barring (ACB). With network slicing, users are processed
according to their respective slice priority, with scheduling
algorithms, for instance, guaranteeing certain levels of latency.

In previous works, we performed static reactive network
slicing using Software-Defined Radios (SDRs) and custom
scheduling algorithms [3] as well as a novel approach utiliz-
ing Configured Grants (CGs) within a simulation framework
[4], which was further examined analytically regarding worst
case response times [5]. To achieve the reliability and low
latency needed for mission-critical communications, predictive
aspects need to be considered. The main contributor to uplink
(UL) latency within the Radio Access Network (RAN) is the
waiting time for sending requests and receiving grants for
each transmission. By utilizing CGs, introduced with Release
15, the time-intensive sending of scheduling requests can be
mitigated, by granting radio resources proactively. While CGs
mainly focus on periodic traffic, the Proactive Grants (PGs)
can be scheduled more dynamically to fit several use cases
and traffic shapes. Here, using Downlink Control Information
(DCI) packets, resource allocation is proactively announced to
User Equipments (UEs) so when data needs to be transmitted
they can use the already reserved slots, rendering scheduling
requests obsolete. In contrast, CGs are specified using Radio
Resource Control (RRC) signaling. Overall, proactive resource
management and provisioning offers opportunities but also
limitations, as detailed in the following.

5G offers three options to access UL resources and lower
one-way delay for slicing:
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Fig. 1. Network slicing enables 5G to simultaneously adapt to multiple
service types. The scenario comprises a latency-critical URLLC and a data
rate intensive eMBB slice, competing for resources.
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1) Grant-Free Access enables base stations to provide re-
served resources for a UE in a dynamic or periodical
manner, thus eliminating time-intensive scheduling re-
quests. Type 1 CGs are designated for this purpose,
as they are particularly suitable for highly periodic
transmission patterns. However, if collisions or loss of
packets appear, i.e., when reserved resources are shared
among devices, mechanisms like Hybrid Automatic Re-
peat Request (HARQ) or k-repetitions procedures need
to be implemented, which in turn may decrease spectral
efficiency and possible gains from utilizing them [6].

2) The reduction of Scheduling Request (SR) periodicity
may lead to more frequent opportunities to send data
for prioritized UEs, however at the cost of increasing
the control overhead within a grant-based network. To
cope with this increase for URLLC slices, other less
latency-sensitive slices such as mMTC may receive less
Scheduling Request Occasions (SROs) in turn. However,
as the number of devices increases, the network load
increases accordingly with the frequency of SROs.

3) Proactive Grants offer the same advantages as grant-
based scheduling regarding exclusively assigned re-
sources, while skipping latency-intensive scheduling re-
quests. Therefore, spectral efficiency is increased by
mitigating transmission collisions and upholding QoS re-
quirements. Utilizing the End-to-End (E2E) slicing con-
cept, the resources can be assigned exclusively within
an Management and Orchestration (MANO) framework,
guaranteeing latencies and preventing latency peaks.

Efficient Radio Resource Management (RRM) mitigates
wasteful radio resource usage and enables time-critical pro-
visioning utilizing one or multiple of the above mentioned
approaches. This work thus focuses on scheduling aspects
for RAN resources on the Medium Access Control (MAC)
layer. Related work is presented in Sec. II, comprising an
overview of current research on 5G network slicing. Sec.
III provides a description of our novel approach based on
predictive scheduling. Next, the evaluation scenario and results
are discussed and put into context in Sec. IV. Finally, Sec. V
summarizes key insights and gives an outlook on future work.

II. RELATED WORK

The focus of this section is on different approaches re-
garding scheduling of resources within wireless networks in
combination with Machine Learning (ML)-based algorithms.
While the typical approach for scheduling is still the Round
Robin (RR) or Proportional Fair (PF) algorithm, the predictive
scheduling is on the rise in research and set as key aspect for
the 5G and beyond networks. In [3], the RR scheduling ap-
proach is extended to provide network slicing features and hard
guarantees for the tenants of each network slice. Prioritization
takes place in a timely manner, therefore a token mechanism
is used: higher priorities allow more tokens or transmissions
to be performed, before the next tenant/slice is scheduled to
send packets. This leads to the loss of prioritization after the
tokens are depleted. In [7] and [8], scheduling algorithms

based on QoS priorities are proposed as well as grant-free allo-
cation of resources for URLLC transmissions, also considering
different types of traffic. Especially for grant-free accesses,
their utilization for highly critical traffic is highlighted in
works by [6], [9] and [10]. There are also several works on
using ML-based scheduling approaches. Here, [11] gives an
overview of combining deep learning algorithms with resource
allocation in wireless networks. In [12], a combination of
deep and reinforcement learning is proposed to tackle the
complexity of network dynamics on the RAN for both large
and small time-scale prediction. The authors of [13] discuss a
combination of priority-based PF algorithm with Q-Learning
to improve reliability and latency of joint URLLC and eMBB
traffic. Works of [14] and [15] focus on slice orchestration
based on channel quality. [14] concentrates on the reduction
of Channel Quality Indicator (CQI) reporting frequency while
providing a low-complexity slice orchestration, utilizing time-
series prediction, whereas [15] uses real-world measurements
to provide an Long Short-term Memory (LSTM)-based model
for predicting PRB utilization on a millisecond timescale.
Previous works emphasized analytical models and simulation-
based studies to the best of our knowledge, whereas this
work concentrates on a proof-of-concept in an experimental
hardware setup using an ML-based approach to predictive
uplink scheduling for network slicing.

III. PROACTIVE RESOURCE MANAGEMENT FOR
RELIABLE NETWORK SLICES

Proactively assigned radio resources are enabled by effi-
cient RRM, which can be improved by utilizing ML-based
approaches as described in the previous Sec. II. Standardized
scheduling schemes for allocating resources on the RAN are
shown in Fig. 2. Conventional approaches rely on reactive
scheduling, i.e. SROs are communicated by the base station
to the UE such that transmissions can be announced to
the base station via SRs. This procedure is the most time-
consuming approach, since waiting times result from awaiting
the occasion to send but also the request itself, and waiting
for the resource allocation by the base station, as depicted on
the left-hand side of the figure.
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Fig. 2. 5G provides various resource allocation mechanisms for use in RAN
slicing. These can be categorized into conventional reactive, grant-free and PG
scheduling. The proposed approach combines proactive resource allocation
with data traffic prediction, as depicted on the right.
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Fig. 3. The evaluation setup is designed to include a RESTful API for splitting the computationally intensive prediction from the base station towards, e.g.,
a MEC. The scheduler of the base station monitors packets received on the MAC/RLC interface and forwards the accumulated packet sizes to the prediction
module. Based on output data, the base station then proactively schedules the grants.

For highly periodic traffic, the 5G standard enables base
stations to provide fixed resource blocks for each UE in a
periodic manner through CGs. Here, certain recurring resource
blocks are reserved for transmission of a certain UE, which
is typically communicated for larger time periods. Therefore,
the need for SRs vanishes, however resulting in PRB wasting
if the resources remain unused, since they are exclusively
assigned to a device. Furthermore, this approach may still lead
to longer waiting times whenever recurring CGs are far apart.
Yet another approach for scheduling resources is given with
PGs, where the base station can send DCI messages to the
UE, thus providing resources, before a SR is sent. Since a UE
typically expects this information before the transmission, PGs
are generally compatible with previous generations of mobile
radio networks, although not standardized. In this work, these
grants are combined with ML to optimize resource alloca-
tion and match the UEs’ future requests. Thereby, latencies
incurred by waiting are reduced massively, while maintaining
high spectral efficiency as depicted by Fig. 2.

In Fig. 3, the overall concept of the used framework
is visualized. The base station constantly monitors packets
received on the interface from MAC layer to RLC layer and
accumulates the calculated packet sizes for the last amount of
n = 1, 000 Transmission Time Intervals (TTIs), which turned
out to be a sufficient basis for the prediction.

TABLE I
TRAINING PARAMETER SETTINGS

Learning Rate 10−4

Layer Structure LSTM (vanilla, 64 Units)
Dense Layer (Activation: linear)

Batch Size 4
Epochs 16

Loss MSE
Optimizer ADAM

Via REST API, the calculation is given to the MEC,
which comprises the RESTful server for interaction and a
Tensorflow-implemented [16] ML model for application. Our
prediction model is based on LSTM, which is suitable for
time series and traffic prediction as shown in [15] and other
works. It is trained with data from real-world measurements1

containing control transmissions in form of International Elec-
trotechnical Commission (IEC) 60870 messages. For training
the model, Keras with Tensorflow [16] backend is used.

The utilized data set is split into 2⁄3 training and 1⁄6 data
for validation respectively evaluation. Cross-validation is con-
ducted to perform hyper-parameter tuning using the Hyper-
band Tuner algorithm. Training, using the final hyperparam-
eter configuration given in Tab. I, results in an accuracy of
92.45 %. Test data is then transmitted via the radio interface
as input to the base station by a UE. After the trained model
anticipates the demands, these payload predictions are used by
the base station to allocate resources accordingly.

Our framework consists of an SDR-based LTE software
stack based on the srsRAN project [17], in which we integrated
our proposed scheduling algorithm as well as our adaptations
for prediction extension. The setup is deployed in virtualized
containers to enable flexible and rapid use in Edge-Cloud
scenarios, partly based on the previous works of [18]. As
core network the nextEPC project [19] is used. Building on
the concepts of [4], a Proactive rather than Configured Grant
approach is used. The model is pre-trained on the training
subset, since prediction would otherwise take too long to be
available in time. Payloads are predicted in an asynchronous
model execution loop and constantly fed back to the base
station. Prediction needs to be performed on a millisecond
basis. Our CPU- as well as GPU-based evaluation showed
that LSTM achieves this goal while offering high precision.

1Anonymized data set available under the following link:
https://github.com/overbeckd/TransmissionDataSet



The execution duration of predictions including transmis-
sion from the MEC to the base station lies within an interval
of tPrediction = 14− 34 ms. Although the design goal of the
prediction model is a fast execution time, continuous in-time
calculation of the next prediction step is challenging since
the scheduling is performed once every millisecond. Thus,
multiple steps are predicted simultaneously and are processed
by the prediction handling module in sets of multiple time
slots. Predictions are initiated consecutively. To determine the
optimal amount of predicted time steps, the elapsed time dur-
ing a prediction process k and the duration of the subsequent
prediction process k + 1, while the predicted values of k
are used, need to be considered. This results in the algebraic
relation depicted in (1). In this specific case we set the number
of predicted time steps to a value of 100 including a safety
margin for irregularities.

#predictedSteps ≥ 2 · tPrediction[ms]

ms
(1)

The implementation is based on a TTI of 1 ms, according to
the 3rd Generation Partnership Project (3GPP) LTE standard
Release 10. Therefore, scheduling requests are expected to
be sent within this time frame. As a result, the subframe
length and the comprised slots for resources are equal to a
SCS of 15 kHz in the 5G standard. UEs of the URLLC slice
are allocated resources according to their Cell Radio Network
Temporary Identifier (C-RNTI), which is exclusively provided
once a UE connects with the base station and is thus in
the RRC state connected. Resource allocation is performed
as follows: First, the amount of data a UE may send and
volume predicted by our model is fed into the calculation
module for PG dimensioning. This is done before the regular,
reactive scheduling process is performed, i.e., resources are
not scheduled yet but calculated afterwards. Then, necessary
UL resources are computed, estimating channel quality by
measures of Signal plus Interference to Noise Ratio (SINR)
or CQI and setting Modulation and Coding Scheme (MCS)
accordingly. The prediction itself does not predict the channel

Algorithm 1 Joint URLLC and eMBB predictive scheduling
Input: UEList consisting of UE i including scheduling- and

slice-specific properties
Output: Assigned PRBs in form of Grant Vector Θ

1: SortedUEList ← Sort(UEList ,Priority(UE i))
2: Θ← ∅
3: for UE in SortedUEList do
4: if Slice(UE ) = ’URLLC’ then
5: Fetch predicted packet sizes X̂ of UE .rnti
6: X̂lim ← min(X̂,UE .maxBudget)
7: γ ← ProactiveGrantCalc(X̂lim)
8: assignedPRBs ← ContiguousPRBCalc(γ,Θ)
9: Θ← Θ ∪ (assignedPRBs,UE )

10: end if
11: Process pending SRs(UE ) on RR basis and add to Θ
12: end for

quality but focuses on the amount of data to be transmitted,
returning the predicted packet size. Regarding channel quality,
the scheduling relies on the measurements by the base station
since this work focuses on mostly stationary devices, also
reflecting the chosen scenario described in Sec. IV, and thus,
volatile channel conditions are not expected. In this step, the
PG payload size is given to the calculation module, which
calculates the exact PRBs to allocate. These PRBs are next
added to the pending UL grants including the calculated MCS,
which is then transmitted as DCI via Physical Downlink
Control Channel (PDCCH) towards the UE. The scheduling
procedure is presented in Algorithm 1. UEs need to have
the ability to deal with the PGs, to skip sending a SR and
to transmit buffered packets directly, which are supported
features of the srsRAN project.

IV. EVALUATION

In the following section, the hardware-based test setup uti-
lizing SDRs is introduced. Moreover, the evaluation scenario
and the related results are presented and discussed.

A. Setting the Scene: Setup and Scenario Description

An overview of the setup used for this work is given by
Fig. 4. The experimental platform consists of a server with
an AMD Ryzen 5900X CPU and 32 GB of RAM used as
eNodeB. Two Intel NUCs with a Core i7-6770HQ, 16 GB
RAM and Ubuntu 20.04.2 LTS (kernel: 5.11.0-34-lowlatency)
connect to Ettus Research USRP B210 SDRs and serve
as UEs. A wired setup is chosen to minimize interference,
utilizing two Wilkinson splitters for connecting UEs to the
base station. All devices are synchronized by the Precision
Time Protocol (PTP) to facilitate precise measurement of end-
to-end one-way delays. As depicted in Fig. 4, the scenario
includes two slices, each with one SDR-based UEs. The first
one acts as critical URLLC slice, which is based on control
messages derived from real-world measurements of IEC 60870
traffic, whereas the other acts as less delay-sensitive eMBB
slice, where loads are generated via iPerf v3.7.

The channel in uplink direction is capable of transmitting a
Transport Block Size (TBS) of 12.576 Bit per TTI, according
to [20], with a MCS of 23 and 25 PRBs available for
scheduling on a bandwidth of 5 MHz. This evaluation not
only demonstrates latency reductions by harnessing LSTM for
proactive allocation, but also increases spectral efficiency.
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B. Evaluation Results

The evaluation is performed using the proposed LSTM-
based PG algorithm on the base station. Measurements com-
pare classic RR and PF scheduling with our approach con-
centrating on latency and throughput, since both in combi-
nation imply a certain trade-off. Within the evaluation, the
srsRAN-based open-source LTE stack is used in Frequency
Division Duplex (FDD) mode. Since the focus lies on the UL
scheduling, the end-to-end one-way delay is measured, i.e., the
time a packet needs from being sent out by the application on
UE side until reception at the Packet Data Network Gateway
(P-GW). From left to right, the different scheduling algorithms
are depicted in Fig. 5 with their respective impact on packet
delays. The reactive static slicing is taken as reference from
previous works [3], whereas RR and PF algorithms are based
on the standard schedulers provided by the srsRAN project.
Starting with the legacy scheduling algorithms, the left-hand
side of the figure shows the results achieved with the PF and
RR schedulers with a mean latency of 30.3 ms and 27.4 ms. In
general, it is noticeable that the average latency accumulates
over a time frame of approximately 20 ms, consistent with the
frequency of scheduling request occasions. Both algorithms
show outliers ranging between 41 ms and 13 ms, while the
RR algorithm performs slightly better regarding the mean
latency. In comparison, the RR and PF scheduling algorithms
achieve higher mean latency results than the slicing-based
approaches, and additionally do not provide hard service
guarantees. Round-robin based static slicing of [3], which
enables the mentioned hard service guarantees but without
strongly focusing on latency, is shown by the middle plot.
Here, a mean one-way delay of 24.0 ms is achieved. The
reactive static slicing achieves a slightly lower delay than
the conventional schedulers since the token-based approach
ensures priority, but still reacts to scheduling requests and
delays them if the available tokens are depleted. However,
the resources are constantly given to the highest priority slice
first, thus enabling the network slicing concept on the RAN.

All of these scheduling approaches do not reach the goal
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Fig. 5. Latency comparison of various reactive legacy and the proposed
novel predictive proactive network slice uplink scheduling algorithms. Static
proactive slicing (second from the right) enables a mean of 4.5ms one-way
latency at the cost of overall network throughput due to overly generous
resource reservation. This loss of spectral efficiency is mitigated by utilizing
predictive methods, enabling precise resource allocation.

of limiting the latency for mission-critical transmissions to a
maximum of 5 ms, thus are unsuitable for control messaging
in Smart Grid scenarios. In contrast, our approach enables
low latencies in combination with guaranteed prioritization of
packets leveraging network slicing using proactive allocation
of resources. On the right-hand side of Fig. 5, the proposed
ML-driven proactive scheduling algorithms are depicted. The
second to right plot shows the best achievable results in one-
way latency by reserving resources for the anticipated packet
sizes for every time slot. Thus, UEs are capable of sending
their data directly when a packet is generated, eliminating
scheduling requests completely. As a consequence, the one-
way delay can be reduced to a mean of 4.5 ms with our
approach, when reserving a constant amount of resources, also
mitigating larger deviations in latency. However, this leads to
less available data rate and spectral efficiency for the overall
network and other network slices. To achieve a better trade off
between critical slices latency and overall network throughput,
we enhanced this approach by predicting the amount of data
and the time slots the packets appear. The results can be
seen in the violin plot on the right-hand side. Here, the mean
latency goes up, in comparison to the static proactive slicing,
to 12.1 ms, which is due to falsely predicted time slots and
thus the necessity of sending scheduling requests. This leads to
outliers ranging up to 41 ms, however an accumulation point
can be recognized around the 5 ms threshold. Nevertheless,
this approach decreases the mean delay in comparison to the
RR-based slicing scheduler by 11.9 ms (approx. 49.4 %).

Beyond latencies, throughput in the eMBB slice is examined
in Fig. 6. From left to right, the achieved data rates of the
corresponding scheduling algorithms are shown in the same
order as in the previous Fig. 5. Here, the static proactive
slicing approach shows the impact of reserving resources
for the prioritized slice and the associated trade off on the
throughput of other slices. The amount of configured data
rate results from the reservation of resources in each time
slot, although the actual transmission is only present at certain
points in time. Therefore, a significant reduction of impact on
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the overall data rate in the network can be achieved by utilizing
prediction modules to provide resources only in the time slots,
where there is an expected transmission, as can be seen on
the right-hand side of the figure. Here, the data rate for the
eMBB slice achieves 98.5% in comparison to the PF scheduler
without such latency guarantees. Therefore, the results show
the capability of our proactive approach to enable substantially
increased QoS demands for low latency communications.
Furthermore, the considered trade-off between URLLC and
eMBB slices does not result in systematic waste of resources
but rather increased jitter in the less critical transmissions of
the eMBB slice, which can be mitigated by buffering packets
(as stated in [2] up to 300 ms).

Limitations in our approach to predicting resources result
from the offline learning method, which prevents further
learning based on misallocated resources. Therefore, results
can be enhanced by implementing additional online learning
capabilities to mitigate convergence issues. Moreover, the
prediction algorithm in the current state does not know when
the packet is generated, and thus how long it has been saved
for the Buffer Status Report (BSR) waiting for a SRO. As
a consequence, the foundation for the prediction might be
biased. That being said, if 100% accuracy can be achieved,
no resources would be wasted, and thus SRs became obsolete
resulting in zero latency induced by scheduling operations.
However, unforeseen conditions such as irregularities in the
transmissions but also external influences on the physical
layer caused by, e.g., heavy rain storms prevent conclusive
prediction for every conceivable use case.

V. CONCLUSION AND OUTLOOK

In this work, the usage of Proactive Grants for reliable, low-
latency RRM is evaluated in terms of latency and data rate
trade-offs based on an experimental SDR platform. Schedul-
ing is enhanced by an ML-based prediction module, which
demonstrates significant steps towards the 5 ms threshold
for mission-critical communication. Our proposed proactive
slicing approach reduces one-way latency by 49 % compared
to RR-based slicing, while simultaneously achieving 98 % of
the eMBB slice data rate. In future work, this approach will
be ported to comply with O-RAN specifications and thus be
deployed as xApp. Also, further work on more sophisticated
ML-based prediction models will be performed to enhance
accuracy on millisecond timescales.
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