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Abstract—Mission critical applications in domains such as
Industry 4.0, autonomous vehicles or smart grids are increasingly
dependent on flexible, yet highly reliable communication systems.
The Fifth Generation of mobile Communication Networks (5G)
promises to support critical communications on a single unified
physical communication network through a novel approach
known as network slicing. We focus in this work on context-
based hard performance guarantees by formalizing an analytical
method for bounding response times in critical systems. This
approach allows to consider different contexts based on models
of degradation of channel quality, and avoids a global highly
pessimistic worst-case bound computed for worst possible chan-
nel conditions. We demonstrate that the proposed method for
computing context-based response times guarantees successfully
bounds results obtained in realistic mobility scenarios using a
machine-learning based 5G simulation framework.

Index Terms—5G, Network Slicing, Latency Guarantees,
Channel Degradation.

I. INTRODUCTION

Driven by increased connectivity and available computation
capabilities, safety-critical real-time functionalities are today
not confined anymore to embedded devices and need to
execute over multiple network-connected devices. Wireless
communication is currently emerging at the heart of connec-
tivity solutions for supporting communication in safety-critical
systems. The Fifth Generation of mobile Communication
Networks (5G) is currently an established technology foreseen
for use in fields, like industry automation and Vehicle-to-
Everything (V2X) communication, where stringent timing and
reliability requirements need to be met.

Network slicing [1] constitutes a key enabler technology
that allows in 5G to manage different classes of services and
their requirements by integrating them into a single physical
communication network, where arbitration between different
slices can be performed. Network slicing allows to provide
a suitable abstraction for physical wireless networks where
resource allocation is performed at the slice level. Providing

guarantees on the timing behavior of such systems remains
however a major challenge that needs to be tackled using
formal analysis.

Wireless communication resources offer in fact a unique
challenge for providing timing guarantees as they deal with
highly dynamic environments where several parameters are
unknown at operation time [2]. In addition to data transmission
arrival requests and packet sizes, channel conditions play an
important role in determining communication latency. Channel
conditions define the quality of a radio signal in a wireless
link. It depends on the Block Error Rate (BLER) defined as
the probability of incorrectly decoding the transport block,
and varies based on different macro and micro physical
and environmental effects like physical interference, weather
conditions, and mobility of users equipment. Reasoning about
timing performance of radio access networks resources in
order to provide guarantees becomes therefore very difficult.
In practice, only empirical methods are used to estimate vari-
ations in transmission times without providing any response
times guarantees.

In order to provide formal timing guarantees, timing anal-
ysis methods [3], [4] are used to bound interference effects
and compute timing guarantees on the latency of individual
transmissions. Bounding the timing effects of shared resources
requires a careful analysis of requests arrivals (inter-arrival
times) and a suitable understanding (modeling) of the charac-
teristics of considered resources. In this paper, we aim at using
methods classically used in the embedded systems domain
for response time analysis to the wireless communication
domain which is inherently highly dynamic. Timing analysis
approaches assume that information required for the analysis
are known at design time, or at least considering worst-case
conditions. We believe that we have to break away from the
idea of one holistic worst-case bound in systems which are
highly dynamic since this can only be highly pessimistic based
on worst-case possible operational conditions of the system.
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We, instead, introduce latency guarantees based on specific
context of operation to better capture dynamics effects, in
particular variations of channel conditions.

According to [5], a context is any information that can be
used to characterise the situation of an entity. An entity is
a person, place, or object that is considered relevant to the
interaction between a user and an application, including the
user and applications themselves. We consider similarly the
notion of context from a user perspective and the parameters
that can influence its behavior (in this case, response time on
5G communication link). In classical response time analysis,
the context is restricted to applications sharing the same
resource, an information which is static or bounded in the
worst-case. We extend here the notion of context based on the
environment of operation, considering variations of channel
conditions. Our contribution is summarized as follows,

• We provide in this paper an analytical formulation for
response time analysis of 5G wireless communication
networks, considering a notion of local guarantees based
on the context of operation.

• For that, we extend the classical busy-window formula-
tion considering variations in the quality of the channel,
by defining models of degradation of channel conditions
reflected in packets transmission times.

• We validate our proposed analytical approach using a real
5G simulation system. The framework builds on machine
learning for predicting channel conditions, considering
realistic scenarios for Photovoltaic (Smart Grid) system
and Electric Vehicle Charging applications, and performs
scheduling and response time computations in 5G net-
works.

II. RELATED WORK

Providing timing guarantees in wireless communication
domains is very challenging due to their dynamic properties
such as channel conditions, type of application and amount of
data that needs to be transmitted. For that reason, the utiliza-
tion of Machine Learning (ML)-aided scheduling algorithms
in the next generation of mobile communication networks
becomes more important [6]. The work of [7] provides an
overview of different ML concepts focusing on handovers
between base stations, while [8] studies the impact of newly
introduced shortened Transmission Time Interval (TTI) with
the 5G standard and its impact on latencies. Authors in [9]
propose a novel approach based on NFV and SDN driven
queuing strategies which demonstrates the ability to provide
hard service guarantees through a dedicated SDN controller
for Management and Orchestration (MANO) that manages
individual slices. Authors in [10] follow with giving an
optimization of the radio resource management in terms of
end-to-end latency through the definition of the so-called
Configured Grants (CGs). The proposed Slice-Aware Machine
Learning-based Ultra-Reliable Scheduling (SAMUS) system is
an Radio Resource Management (RRM) scheduler prototype
using Configured Grants (CGs) which aim to minimize latency
intensive scheduling requests by pre-allocating radio resources

based on prediction of traffic demands and channel conditions
by utilizing the ARIMA method [2] as proof of concept.

However, these techniques are empirical since the results
are provided through the observation and measures of phe-
nomena rather than from theory and analytical methods. In
our work, the channel conditions are given by ML-based
predictions but the timing bounds are established through
analytical methods based on contexts. In fact, the network
under 5G is expected to be completely context aware [11].
For any given device, the network is continuously aware of its
individual location, features, its surroundings and environment.
This includes information regarding all the devices present
in its neighbourhood and their capabilities. Regarding that,
5G system will need to be context-aware that uses context
information in a real-time mode depends on network, devices,
applications, and the environment of users’ with the objective
of providing high quality of service (QoS). Authors in [12]
provide a potential architectural solution for mission-critical
context-aware collaboration which has to adhere to strict
timing deadlines and ultra-low latency data transmissions.
The work in [13] is another example of context exploitation,
but used to reduce global energy consumption. The authors
propose a detailed context architecture and framework for
context based scheduling algorithms which can exploit any
context information related to user’s equipment and eNodeB
to achieve the desired goals based on the proposals for 5G.

In order to provide guarantees, network slicing is seen as
key enabler in 5G communication systems, as it is capable of
providing guaranteed resources to the tenants of a virtualized
network slice. The technologies which mark the basis for
network slicing can be grouped in Software-Defined Network-
ing (SDN) and Network Function Virtualization (NFV) [14].
The work in [15] demonstrates promising results utilizing
Software-Defined Networking (SDN) in a wired testbed to
provide hard service guarantees based on the network cal-
culus approach, laying the foundation for further research
within wireless networks using the concept of network slicing
[16]. Approaches such as [17]–[19] propose an analytical
formulation for computing bounds on latencies in wireless
communication systems. In [18], authors provide an analysis
for bursty traffic in proportional fair scheduling algorithms in
Orthogonal Frequency-Division Multiple Access (OFDMA)-
based wireless systems, using M/M/1 queuing modelling for
each user. In [17] an analytical Markov model is proposed to
characterize resource sharing in wireless communication net-
works. In [19] an analytical model based on the busy-window
formulation [20] for bounding response times in 5G network
slicing was also proposed. The model however focuses solely
on variations of packet sizes assuming that channel conditions
are always stable. We propose in this paper an alternative
context-aware method for providing timing guarantees in 5G
network slicing based on the busy-window approach. It relies
on event arrival curves, similarly to network calculus, and
computes considering initial channel conditions and models of
degradation, for different contexts, a bound on the accumulated
delay due to interference and variations of channel quality.



III. 5G NETWORK SLICING: BACKGROUND

In the following, we provide background information on 5G
resources characteristics and network slicing, relevant to the
contribution of this work.

A. Radio Access Resources in 5G

Wireless communication resources are radio frequency
waves transmitted using subcarriers which can be multiplexed
considering multiple frequency and time domains, following
the classical OFDMA. A Resource Element (RE) is therefore
the smallest time-frequency resource (i.e., one OFDM symbol)
which consists of one subcarrier modulated over time. A
Resource Block (RB) is a group of subcarriers contiguous in
frequency over symbol in time. The granularity of a RB in
terms of number of RE varies based on the channel bandwidth
and subcarriers spacing. Specifically, in 5G, one RB contains
12 subcarriers in frequency domain similar to LTE. In LTE
resource block bandwidth is fixed to 180 KHz but in NR it is
not fixed and depend on subcarrier spacing. For the sake of
simplicity, we consider in the rest of the paper, similarly to
[10], that resources blocks are the basic resource that can be
allocated to a given application. The number of bits that can
be transmitted within a resource block is not fixed but rather
depends on the used modulation scheme.

B. Modulation Coding Scheme (MCS)

For any wireless communication scheme, MCS determines
the amount of bits being transmitted per symbol or resource
element. The MCS is typically adjusted by the base station and
depends heavily on the quality of the received radio signals
on the channel. A better quality leads to higher MCS and
therefore more useful bits that can be transmitted within a
symbol. The base station monitors periodically channel con-
ditions and modifies the applied MCS when required, which
leads to changes in the available data rate. 5G New Radio
(NR) supports several modulation schemes, namely QPSK, 16
QAM and 256 QAM. While 2 bits can be transmitted per RE
considering QPSK, 4 bits can be transmitted considering 16
QAM and 8 bits considering 256 QAM respectively. Data rate
for every transmission depends therefore on the ratio between
useful bit and total transmitted bits.

C. Network Slicing and Resource Allocation

Network slicing views resources in 5G as a grid of mul-
tiple resource blocks, each block is two dimensional and
corresponds to an allocation in the radio frequency and time
domains, see Fig 1. Based on the size of transmissions, the
latency criticality of the slice and the modulation scheme, the
network slicing scheduler allocates dynamically the required
number of resource blocks to be used by a given application.
Whenever wireless channels condition changes (i.e., improves
or deteriorates), the modulation scheme is modified thereby
leading to new allocation of Resource blocks.

Fig. 1: Overview of the 5G slicing layers and possible resource
allocation of the 5G grid for slices.

IV. ASSUMPTIONS AND SYSTEM MODEL

We consider a system with a set of slices S = {s1, ...sl}
that requests simultaneously the 5G resource grid RG5G. We
consider, similarly to [19], that each slice is assigned a priority
value to reflect its criticality. Priority values are assigned to
slices in a descendent order according to their criticality level
(i.e., higher criticality levels are denoted with lower priority
values). The dynamics of data transmissions are modeled using
event-arrival functions where an event refers to a transmission
(composed of one or multiple packets) through the 5G wireless
network. Mechanisms as packet retransmission are not taken
into account for the purpose of our work since we focus on
how the channel quality influences timing guarantees and not
on the correct reception of each packet. In the following, we
define applications characteristics and detail specificity of 5G
resources and our defined channel conditions relevant context.

A. Applications characterization

Definition 1 (Slice): A slice si = (αi, NUEi, Ti) is an
application with a given criticality level. Based on criticality, a
slice is assigned a statically fixed priority level αi. Every slice
si has a number NUEi of User Equipments (UEs) executing
the same application and performing data transmissions with
possibly a different periodicity. Ti is the aggregated sequence
of all transmissions performed by UEs within a slice i. Note
that all UEs belonging to the same slice have the same priority
αi. We do not distinguish between packets from different UEs
within the same slice.

Definition 2 (Data Transmissions): Data transmissions T =
{e1, ..., en} are defined as a sequence of events. Every event
ek = (tk, wk) is a transmission request defined as the time
tk where the request is activated and a workload wk which
corresponds to the size of the packet to be transmitted by
request ek. Note that for each slice i, all data transmission
requests inherit the priority level from their corresponding
slice.

We use event models commonly used to model tasks acti-
vation in real-time analysis methods like real-time calculus or
compositional performance analysis [20] to bound the arrival
time of data requests.

Definition 3 (Packets Arrival Models): Event models are
used to characterize for every slice i the arrival of data
transmissions. They are defined using the function η+i (∆t)



which denotes for every slice i the maximum number of
transmissions issued within a time window ∆t. The inverse
function δ−i (n) denotes the minimum time interval between
the first and last transmission in any sequence of n transmis-
sions from slice i. For a strictly periodic (or sporadic with
minimum inter-arrival time) arrival of streams from UEs of
slice i with a period Pi, η+i (∆t) is defined as follows,

η+i (∆t) = ⌈∆t

Pi
⌉ (1)

B. Resources Characterization and Context Definition

As mentioned previously, 5G is composed of wireless com-
munication resources as radio frequency waves multiplexed in
the frequency and time domain.

Definition 4 (5G Resource Grid): A 5G resource grid RG5G

is defined as a matrix of n × m Resource Blocks (RBs). A
RB represents the smallest unit to be allocated to the system.
The total number of RBs in the resource grid is limited
by maximal channel bandwidth and subcarriers spacing (or
numerology [21]).

Definition 5 (Channel Condition and Modulation Scheme):
Let MCS be the value of the current modulation and coding
scheme. Note that the value of MCS does not change contin-
uously but based on defined thresholds on the values of Block
Error Rate (BLER) and corresponding acceptable signal to
noise ratio (SNR)1 for each modulation scheme. We bound
this change considering d−mcs as a minimum time between
two BLER thresholds and therefore a change in two values of
MCS.

Definition 6 (MCS Data Rate): Let bmcs be the available
bandwidth based on the selected modulation and coding
scheme. Calculations are standardized following the 3GPP
38.214 (chapter 5.1.3.2)2, involving modulation scheme, sub-
carrier spacing configuration, and the number of resources
symbols. To give a numerical example, considering 106 RBs
and an MCS = 14, which is a middle value of channel quality,
we are able to transmit 59432 bits in 1 ms.

Definition 7 (Packet Latency): The execution time (i.e.,
transmission latency) C of a packet ek is defined as the ratio
between the workload wk of the packet and the data rate bmcs

for a given MCS.
Ck =

wk

bmcs
(2)

1) Characterizing Variations of Channel Conditions: In a
dynamic environment such as wireless communication, we
focus on parameters relative to changes in channel conditions
that influence response time. We consider changes in channel
conditions as changes reflected in the value of MCS3. It
determines the bandwidth available expressed as the amount
of bits which can be transmitted in a slot of 1 ms, which
corresponds to the subframe length of a packet in 5G. A

13GPP TS 38.104 V16.6.0 Section 8.2.6
2https://5g-tools.com/5g-nr-tbs-transport-block-size-calculator/
3We do not consider detailed physical models affecting the quality of chan-

nel signals but rather consider abstractions of changes in channel conditions
considering the value of MCS.

lower MCS value will lead to less bandwidth available for
transmission. Note that the transmission of one packet can be
longer than d−mcs to witness different variations of MCS values
and therefore available bandwidth. Degradation of channel
conditions have particularly a large effect on the response
time. In the following we define models of degradation of
channel conditions that will be later incorporated in response
time analysis.

Definition 8 (Variations of Channel Conditions): The base
station monitors periodically (every d−mcs) the channel con-
ditions to adapt the MCS value whenever required. Since
we do not consider continuous changes in channel qualities,
but rather changes in the value of MCS at every sensing
period d−mcs, we represent channel variations in a discrete
form. Let Xmcs = [mcs1, ...,mcsn] be a vector of MCS
values reflecting variations in channel conditions. Note that
for any {(i, j), j ≥ i}, the time ∆t separating variations in
mcs (Xmcs[i], Xmcs[j]) is ∆t = (j − i) ∗ d−mcs.

Definition 9 (Degradations of Channel Conditions): Chan-
nel quality can improve or deteriorate over time based on
many micro and macro environmental factors (e.g., weather
conditions, physical channel interference and noise), thereby
leading to an improvement or deterioration of available band-
width. Given a value mcsi in the vector Xmcs, a degradation
is defined as an immediate decrease in the value of MCS, that
is, ∃i, s.t. Xmcs[i+ 1] < Xmcs[i] , or as a stabilization of the
value of mcs after a previous decrease of MCS value. In this
case, degradation is defined as the absence of improvement
after a previously occurring degradation, thereby leading to a
stationary state of degradation. That is,

{
∃i′,i, (i′<i) s.t. Xmcs[i

′ + 1] < Xmcs[i
′]

∀k, (i′+1≤k<i) s.t. Xmcs[k + 1] = Xmcs[k]

Improvements can be defined in a similar fashion considering
increase of the value of MCS.

Definition 10 (Models of Degradation of Channel Condi-
tions): The number and distribution of occurrences of degra-
dation has a great impact on latency and response time.
Due to the limitation of 5G data rates and variations of
operational environment (e.g., network coverage when con-
sidering mobility), there is usually never a continuous degra-
dation of channel conditions. That means that degradations
are always followed (after some time) by improvements. We
therefore define models of variations that consider cycles
of degradations and improvements of different lengths. Let
M = {(m,µ), (k, ξ)} be a model of variation of channel
conditions where (m,µ) defines the number of m subsequent
and µ stationary degradations, and (k, ξ) defines the number
of k subsequent and ξ stationary improvements. Note that
we need to distinguish between subsequent and stationary
degradations and improvement because they will have an
impact on the response time. As detailed in the evaluation
section, if we consider the same initial channel condition,
and an overall number of degradations, for example 5, having
only 5 subsequent degradation will have a worse response



time than one subsequent degradation followed by 4 stationary
degradations.

Definition 11 (Rate of Change): Let ρ be the rate of change
defined as the difference between consecutive MCS values,
ρi,j is defined as follows,

ρi,j =
|bmcs(j)− bmcs(i)|

bmcs(i)
(3)

For the sake of simplicity, we consider in the following a
maximum ρ+ and minimum ρ− rate of change of MCS value,
that is ρ+ = {∀i,j , max(ρi,j)} and ρ− = {∀i,j , min(ρi,j)}.
A relevant property is that channel conditions usually deterio-
rate or improve gradually, thereby leading to a gradual change
in the value of MCS, that is ρ+ and ρ− ≤ 1. Note that for
computing the worst-case, ρ+ is considered for degradations
and ρ− for improvements.

2) Context-based Variations: A context in wireless commu-
nication networks generally refers to the context of operation
of the network including individual locations, features, sur-
rounding and environment. Contexts and operation conditions
can change over time. Since we focus on channel degradations
and their influence on the response time, we consider as con-
text features from the environment and operation conditions
that reflect variations in channel conditions.

Definition 12 (Context): A context Φ[t,t+∆t) =
{mcsinit, (ρ

+, ρ−),Mϕ} is defined over an interval of time
[t, t+∆t) where variations of channel conditions are spanning
over multiple periods d−mcs of MCS changes. It is defined with
an initial MCS value mcsinit at time t reflecting initial channel
conditions in that context, a maximum and a minimum rate of
change ρ+ and ρ−, respectively, and a model of degradation
Mϕ = {(m1, µ1), (k1, ξ1), ..., (mn, µn), (kn, ξn)} reflecting
several possible cycles of degradations and improvements in
that context over [t, t+∆t).

Definition 13 (Global Worst-Case Guarantees): Global
worst-case response time guarantees can be computed con-
sidering possible static worst-case channel conditions and
variations over all contexts, that is ∀[t, t+∆t), worst-possible
initial conditions mcsinit = min({mcs})4, and maximum
number of degradations max({(m,µ)}) followed by a mini-
mum number of improvements min({(k, ξ)}).

Definition 14 (Context-Based Worst-Case Latency Guar-
antees): Global worst-case guarantees can be highly pes-
simistic. We define therefore context-based worst-case guaran-
tees. Given a context Φ[t,t+∆t), it provides worst-case response
times bounds in that context considering mcsinit and Mϕ.

V. CONTEXT-BASED RESPONSE TIME ANALYSIS

Changes in channel conditions influence the modulation
and coding scheme (mcs) applied by the base station to the
current transmission and consequently, it leads to an increase
or decrease in the data rate. For the purpose of our analysis
to bound the worst-case response time, we reflect changes in
mcs on changes in the transmission time of individual packets

4Note that smaller MCS values lead to lower available bandwidth.

based on defined models of degradation of channel conditions.
Note that two packets with the same size can have different
transmission times depending on the modulation scheme.

As stated in the previous section, the number and also
distribution of degradation of channel conditions reflected in
the mcs value and defined models of degradation have a great
impact on latency and response time. In the following, we
first explain how the different models of degradation influence
latency for individual packets. We later provide analytical
bounds on the worst-case latency of each slice performing q
transmissions depending on context-based varying conditions.
We define the worst-case response time, first in isolation and
then considering other higher-priority interfering slices.

A. Basic Slice Latency Bound
Given a context Φ[t,t+∆t), we are interested in bound-

ing the response time of slices performing transmissions in
that context, considering variation in channel conditions and
degradation effects. Let us first consider one slice in isolation
performing q packets transmission. Depending on the load
of packets (i.e., packets size), their transmission time can be
longer than d−min. Packets can therefore witness during trans-
mission multiple variation of channel conditions, compared to
the initial mcsinit value where the transmission of packets has
started. In our context, this results in a change in the execution
time of the packet which should be notified to the analytical
tool for the next busy window computation.

Let C ′
Φ(q) be the transmission time of q packets from slice

i in context Φ. It is defined as follows,

C ′
Φ(q) = Ct

Φ(q) + ∆C+
Φ (q)−∆C−

Φ (q) (4)

where, Ct
Φ(q) is the transmission time of q packets considering

initial mcs value mcsinit at time t for the entire transmission
of q packets (i.e., assuming that initial channel condition does
not change), ∆C+

Φ (q) is the delay of transmission considering
degradation of channel condition in that context, ∆C−

Φ (q)
is the reduced transmission time due to an improvement of
channel condition. In the following, we detail each term of
the equation.

a) Stable Channel Conditions: We refer to Ct
Φ(q) as

the nominal transmission time of q packets considering that
channel conditions, starting from initial mcs value does not
vary during the entire transmission of packets. It is defined as
follows,

Ct
Φ(q) =

∑q
k=0 wk

binit
(5)

where,
∑q

k=0 wk is the overall transmission load of q packets.
Transmission time Ct

Φ is directly derived using the ratio
between load and bandwidth (ref. Eq 2).

Starting from initial channel conditions at time t, variation
in channel conditions over [t, t+∆t) can lead to an increase
of transmission time in case of degradation or decrease due
to improvement. Note that variation of channel conditions are
directly reflected in the available bandwidth. For a fixed load of
q packets, transmission time therefore decreases and increases
proportionally to bandwidth.



Fig. 2: Example of a context Φ[t,t+∆t) with (m,µ) degradations
and (k, ξ) improvements. Illustration of the effect on decreased and
increased bandwidth compared to initial mcs value and bandwidth
binit. Note that in this simple example, ρ+ and ρ− have a the same
value.

b) Effect of Degradations: Considering (m,µ) degrada-
tions of initial channel conditions in context Φ and (k, ξ)
improvements during the transmission of packets, the nominal
execution time Ct

Φ(q) is delayed by a factor of ∆C+
Φ (q),

defined as follows,

∆C+
Φ (q) =

∆W−

β+
deg

(6)

where, ∆W− is the accumulated load that cannot be send due
to degradation (compared to the nominal case) and β+

deg is the
highest possible achievable bandwidth at the end of (m,µ)
degradation. ∆C+

Φ (q) is defined considering a ratio between
overall accumulated workload and the achievable bandwidth at
the end of the degradation phase, where improvements occur.

The accumulated load ∆W− is directly derived as follows,
as a product of time units and reduced bandwidth compared
to binit.

∆W− = d−min ∗ (∆βdeg +∆βdeg,imp) (7)

It is defined considering 2 phases: a degradation phase re-
sulting in ∆βdeg where bandwidth is decreasing compared
to binit, followed by an improvement phase resulting in
∆βdeg,imp where bandwidth is increasing but is still below
or equal to binit, see (red area) in Fig 2. Since increase or
decrease of bandwidth occurs at every d−min, it is sufficient
to multiply difference in bandwidth by time d−min to derive
workload.

During the degradation phase, the difference ∆βdeg in
bandwidth (compared to binit) is derived as follows,

∆βdeg =
m∑

λ=0

(binit − λ ∗ ρ+ ∗ binit)

+µ ∗ (binit −m ∗ ρ+ ∗ binit)
(8)

considering m subsequent degradations. After every d−min a
new degradation occurs, every new degradation leads to a
ρ+ ∗ binit decrease of bandwidth value5. After m subsequent
degradations, additional µ stationary degradations can occur

5We bound uniformly the rate of change (i.e., increase or decrease) of
bandwidth considering maximum rate of change ρ+.

where bandwidth is stable at (binit − m ∗ ρ+ ∗ binit) for µ
periods of d−min.

Degradations are followed by (k, ξ) improvements. Im-
provements occur as well gradually after every d−min, leading
to an additional phase with difference ∆βdeg,imp defined as
follows,

∆βdeg,imp =





∑m
λ=0(binit − λ ∗ ρ− ∗ binit) if k ≥ m

∑(m−k)
λ=0 (binit − λ ∗ ρ− ∗ binit+

ξ ∗ (binit − (m− k) ∗ ρ− ∗ binit)) otherwise
(9)

where increased bandwidth is still below or equal to binit. We
distinguish between the case k ≥ m where binit is reached
after m out of k gradual improvements (in terms of load, this
phase is symmetric to the first phase of m degradation), and
the case k < m followed by ξ stationary state of improvement,
where the bandwidth remains below binit.

As mentioned previously, the accumulated load ∆W− is
sent at the end of the degradation phase with highest achiev-
able bandwidth β+

deg . It is defined as follows,

β+
deg =





binit if k ≥ m

binit − [(m− k) ∗ ρ+ ∗ binit] otherwise
(10)

where, depending on the number of following improvements
k, the bandwidth can reach again binit when k ≥ m, or stay
at a lower bandwidth level (m− k) ∗ ρ+ ∗ binit when k < m.

c) Effect of Improvements: Considering (k, ξ) improve-
ments of initial channel conditions during the transmission of
q packets, the nominal execution time is decreased by a factor
of ∆C−

Φ (q), defined as follows,

∆C−
Φ (q) =

∆W+

β−
imp

(11)

where, ∆W+ is the additional accumulated load that can be
send due to improvements (compared to the nominal case) and
β−
imp is the lowest possible achievable bandwidth at the end

of (k, ξ) improvements.
Similarly to the effects of degradation on bandwidth, the

accumulated load ∆W+ can be defined as follows,

∆W+ = d−min ∗∆βimp (12)

where, ∆βimp is the difference in increased bandwidth com-
pared to binit. Note that this case assumes that there are more
improvements than degradations (i.e., k ≥ m), see (blue area)
in Fig 2.

During the improvement phase beyond binit, the difference
∆βimp in bandwidth (compared to binit) is derived as follows,

∆βimp =

(k−m)∑

λ=1

(λ ∗ ρ− ∗ binit − binit)+

ξ ∗ ((k −m) ∗ ρ− ∗ binit − binit)

(13)

considering (k − m) subsequent improvements after binit.
Similarly to degradations, a new improvement occurs after



TABLE I: Overview of all notations and respective description used in Section IV and V.

Parameter Description

η+i (∆t) Maximum number of transmissions issued within a time window ∆t for slice i

d−mcs Minimum time between a change in two values of mcs

ρ Rate of change defined as the difference between consecutive mcs values

M Model of variation of channel conditions where (m,µ) defines the number of m subsequent and µ stationary degradations, followed by (k, ξ) defines the number of k subsequent and ξ stationary improvements

Φ[t,t+∆t) Context defined with an initial mcs value mcsinit at time t , a maximum rate of change ρ+ and a model of degradation Mϕ

C′
Φ(q) Transmission time of q packets from slice i in context Φ

Ct
Φ(q) Nominal transmission time of q packets considering that channel conditions do not vary during the entire transmission of packets

∆C+
Φ (q) Delay derived by the accumulated load that cannot be send due to degradations

β+
deg Highest possible achievable bandwidth at the end of (m,µ) degradations

∆W− Accumulated load that cannot be send due to channel degradation (compared to the nominal case)

∆βdeg Difference in bandwidth (compared to binit) during the degradation phase

∆βdeg,imp Difference in bandwidth (compared to binit) during improvement phase but is still below or equal to binit

∆C−
Φ (q) Time recovered due to channel improvements

ω+
i,Φ(q) Worst-case response time in a given context Φ[t,t+∆t) required to perform q transmissions from slice i in the presence of interfering higher priority slices j

γi Blocking time due to lower priority slices, defined as 1 ms

every d−min, leading to a ρ−∗binit increase of bandwidth value.
After k−m subsequent improvements after binit, additional ξ
stationary improvements can occur where bandwidth is stable
at ((k −m) ∗ ρ− ∗ binit) for ξ periods of d−min.

The additional accumulated load ∆W+ can be sent at β−
imp

as the lowest possible achievable bandwidth at the end of (k, ξ)
improvements. It is defined as follows,

β−
imp = binit + ((k −m) ∗ ρ− ∗ binit) (14)

where, the bandwidth increase reaches (k − m) ∗ ρ− ∗ binit
improvements after binit.

d) Multiple Variations of Channel Conditions in Context:
For the sake of simplicity, we considered so far that a context
Φ contains one cycle of degradations and improvements,
that is Mϕ = {(m,µ), (k, ξ)}. More generally, if we have
multiple cycles of degradations and improvements Mϕ =
{(m1, µ1), (k1, ξ1), ..., (mn, µn), (kn, ξn)} in context Φ (i.e.,
subsequent red and blue areas in Fig 2), the definition of C ′

Φ(q)
in Eq 4 is extended as follows,

C ′
Φ(q) = Ct

Φ(q) +

n∑

λ=1

[∆C+
Φ (q)−∆C−

Φ (q) |

(mλ, µλ), (kλ, ξλ)]

(15)

where, the sum of delays and reduced transmission times can
be computed based on every degradation and improvement
cycle. Note that every cycle can have different values of
m,µ, k, and ξ.

B. Context-based Worst-case Response Time

Slicing allows to map resource blocks to applications which
are then called slices. Based on that, resource sharing and
therefore timing interference occurs. Interference effects lead
to a delay for lower-priority slices. Therefore, when multiple
slices (i.e., applications) are active at the same time with high
packet loads, the 5G grid is not sufficient to serve simulta-
neously all slices. We consider, similarly to [19], that slices

have different priorities reflecting different levels of criticality
or importance, and that the scheduler allocates resource blocks
in the 5G grid first to higher priority slices and then to slices
with lower priority, thereby leading to an increase in response
time. We consider in the following the 5G grid as a single
resource and rely on the busy-window approach to bound the
response time of each slice in the presence of other interfering
slices.

The busy-window was first introduced in [22], to bound the
maximal time interval during which a task is ”busy” processing
an event. It was later extended in [23] to multiple event
busy-window, which constitutes the maximal time required
to process q activations from a given task. Let ω+

i (q) be
the q-event busy windows of a slice i that describes the
maximum time interval required to complete the transmission
of q consecutive packets considering network slicing under
static priority preemptive scheduler.

The busy-window is based on a careful estimation of tasks
execution times (usually considering worst-case execution
time) as inputs for the response time analysis. As mentioned
previously, providing global worst-case time guarantees con-
sidering worse possible channel conditions will lead to highly
pessimistic results. Therefore, we chose instead to bound,
given an operational context, the response time consider-
ing corresponding initial channel condition and degradation
model. Given the busy-window, we assume at the start of
every context critical instant where all slices are activated si-
multaneously and accounting for maximum interference from
higher priority slices. Note that we chose the standard busy-
window formulation where we reflect the notion of contexts
in worst-case execution times of individual slices as defined
in the previous section.

Let ω+
i,Φ(q) be the worst-case response time in a given

context Φ[t,t+∆t) required to perform q transmissions from
slice i in the presence of interfering higher priority slices j.



It is defined as follows,

ω+
i,Φ(q) ≤ γi + Ci,Φ(q)+∑

∀j∈hp(i)

Cj,Φ(ηj(ω
+
i,Φ(q)))

(16)

where, γi = TTI is the blocking time due to lower priority
slices, defined as 1 ms, which corresponds to a Subcarrier
Spacing (SCS) of 15 kHz within the NR specification. Ci,Φ(q)
is the execution time of slice i in isolation given the context
Φ as defined in the previous section, and Cj,Φ(ηj(ω

+
i,Φ(q))) is

the delay due to the transmission of ηj(ω+
i,Φ(q)) packets from

other interfering slices in context Φ.
a) Discussion: Reasoning about specific contexts for

response time analysis requires deriving conditions on the
convergence of the busy-window and the size of required
interval [t, t+∆t) used to define a context.

1) The busy-window is a fixed point computation, where
results from one computation iteration are used for com-
puting the transmission latencies in the next iteration.
Since execution times per packet vary in an increasing or
decreasing order based on the channel conditions, the load
may be too high in the considered interval and iterations
may never reach a fixed-point. Intuitively, starting from
a schedulable context at initial mcs and binit at time t, a
sufficient condition on schedulability is that the additional
gain of time due to improvements should be more or
equal to the delay due to degradations.

2) For the sake of simplicity, we assumed that a context is
defined on an interval [t, t + ∆t) sufficiently large (i.e.,
known models of degradation over a sufficiently large
interval) so that execution starts and completes in that
interval. Defining an interval length can be based first
on execution time [t, t + Ci,Φ] as an initial value and
is then extended with the iteration of the busy-window
computation.

VI. EXPERIMENTAL EVALUATION

The experiments section is divided in two parts. We firstly
study the behavior of our proposed analysis through multiple
experiments focused on deeply understanding how the Worst-
Case Response Time (WCRT) computation is influenced by
variations in channel conditions. Successively, we validate
the proposed analysis considering realistic use cases and a
comparison with the SAMUS simulation framework [10] of
5G network slicing for providing the latency of every packet.
On both experiments we focus only on the latency of packets
from the lower priority slice since the response time of packets
from the highest priority slice is equal to their basic execution
time, considering no timing interference from lower priority
slices causing additional delays. In fact, when multiple slices
are active at the same time and request to send packets,
resource blocks are first allocated to higher priority slices
and then lower priority ones. This leads to timing interference
from higher priority slices reflected in transmission delays for
lower priority ones. The proposed busy-window based formal

TABLE II: Overview of the experiment settings.

Packet Size Slice1 4100 Bytes
Packet Size Slice2 2000 Bytes

Number of UEs for Each Slice 1
Channel Quality Changing every 1 ms

analysis for bounding the response time of lower priority
slices is implemented using pyCPA [20] tool for the worst-
case response time computation. In the following, we focus
mainly on the effects of channel quality on the latency, and
the delay introduced by the interfering slice considered in the
analysis.

A. Effects of Channel Condition Variations

In the first set of experiments, we analyze the impact of
channel quality on the latency bounds of the lowest priority
slice computed by the proposed context-based worst-case
response time analysis. We observe how the WCRT varies
depending on the number and distribution of occurrences of
degradation by considering multiple models M of variations
of channel conditions. In Table II, considered parameters
are reported. After fixing the packet size for Slice1 (lowest
priority) and Slice2 (highest priority) to 4100 and 2000 Bytes,
respectively, we assume that the channel quality varies every 1
ms. We compute the worst-case response time of a sequence of
multiple transmissions (20 packets in this case). We investigate
the effect of channel conditions on the WCRT by considering
the following different variants of contexts configurations that
are comparable,

1) Same initial channel conditions and fixed number of
degradations and improvements. We vary the distributions
(i.e., position or interleaving) of the number of degrada-
tions and improvements in the interval. The two extreme
cases occur when all degradations appear as bursts, at the
beginning or end, of the transmission interval.

2) Multiple initial channel conditions with a fixed number
of improvements and variable number of degradations of
initial channel conditions.

3) Multiple initial channel conditions with a fixed number
of degradations and variable number of improvements
separating two bursts of degradations of initial channel
conditions.

We detail in the following obtained results.
1) Position of the Channel Degradations: We consider an

initial MCS value of 13, in addition to a fixed number of
3 degradations and 5 improvements. We test all different
permutations M of a total of 3 occurrences of degradation
and 5 improvements.The first extreme case occur when all
degradations of the initial mcs value happen at the beginning
of the interval followed later by improvements. In the second
case, all improvements of the initial mcs occur at the beginning
of the interval followed by all degradations occurring at the
end. As mentioned previously, for all these permutations,
the number of degradations and improvements remains the



Fig. 3: Worst-Case Response Time (WCRT) considering different
distribution of the mcs degradations. From left to right, all the
degradations are positioned and then moved gradually from the end
to the beginning of the considered [t, t+∆t).

same. Only the distribution of improvements compared to
degradations plays therefore a role. We also consider the
same rate of change for each occurring degradation (resp.
improvement).

Results are reported in Fig. 3, where we observe that the
computed bound on the response time (WCRT) is higher
for the configuration where all degradations happen at the
beginning followed then by all improvements. This behavior
is explained by considering that the sooner the mcs starts
decreasing, the less bandwidth is available for transmissions,
which leads to a higher accummulated backlog that can only
be transmitted when improvements occur and would therefore
require later more time for transmission. As we interleave
degradations and subsequent improvements, the worst-case
response time decreases as the accumulated backlog is reduced
whenever there is an improvement of channel conditions
leading to a higher bandwidth available for transmission of
current packets and backlog.

2) Amount of Channel Degradations: In the second ex-
periment, we compute WCRT for multiple contexts defined
with different mcsinit. We test as previously for each con-
text the effect of number of degradations. For that, we set
M = {(m, 0), (10−m, 0)}. We consider only the two extreme
cases of distribution of degradations (i.e., all degradations at
the beginning or end of the transmission interval). We refer
to both cases respectively as max possible WCRT and min
possible WCRT in this context, based on the number and
distribution of possible degradations. The results are depicted
in Fig. 4.

We observe that the latency bound depends on mcsinit and
the number of degradations m. The lower is the value of
mcsinit, and the higher is the value of WCRT since smaller
bandwidth is associated with smaller values of mcs. Simi-
larly, as m increases, the number of degradations of channel
conditions across the interval increases, leading therefore to
longer time periods before an improvement of channel con-
dition is observed. This leads consequently to higher WCRT
values. Note that computations are limited by the value 30ms
expressing a non-computable bound for the response time. In

Fig. 4: Worst-Case Response Time (WCRT) for different mcsinit

and number of degradations m. Min (resp. Max) WCRT corresponds
to all m degradations occuring at the end (resp. beginning) of the
transmission interval.

Fig. 5: Worst-Case Response Time (WCRT) for different mcsinit

and number of improvements k.

this case, no guarantees can be provided. This occurs due to
limitations of the analysis and used pyCPA tool. Indeed, the
analysis and the tool are limited by schedulability conditions
(i.e., non schedulable contexts) in scenarios where mcs value
is very low, meaning that individual packets have a very high
transmission time due to very poor channel conditions, leading
to a full utilization of the channel.

3) Distance Between a Set of Channel Degradations: For
the last set of experiments, we investigate the effect of variable
number of improvements separating 2 bursts of degradations
as this has additionally an effect on latency. For that, we
set M = {(3, 0), (k, 0)} which corresponds to change the
distance between 2 different burst of degradations. As before,
we apply the context-based analysis considering three different
mcsinit as illustrated in Fig. 5. In this case, a WCRT value
of 30 ms is observed as the limit of computable WCRT given
pyCPA and the schedulability condition. Note that computable
WCRT for lower mcs values depends on the number of
subsequent improvements which then improves the utilization
of the channel with increased bandwidth due to improvements.
For example, for mcsinit = 5, 11 consecutive improvements
are at least required to satisfy the schedulability condition
and compute the WCRT. By increasing mcsinit, the effects
of number of improvements for utilization is reduced and the



WCRT can be computed for lower values of k.
Note that, in the last 2 experiments, we consider similar

initial channel conditions mcsinit. Results from Fig. 4 and
Fig. 5 are however not comparable since experiments consider
different contexts where the focus changes w.r.t. the considered
model of degradations.

B. Validation of Analysis Results

In the following, we consider validation of the proposed
context-based worst-case analysis against a 5G simulation
framework and considering data of variations of channel
conditions and application transmission requests from realistic
use case.

1) The SAMUS 5G Network Slicing Simulation Framework:
The framework depicted in Fig. 6 and developed in [10]
consists of a 5G Resource Grid Simulator (5G-RGS) as
well as a Radio Resource Manager (RRM) scheduler named
Slice-Aware Machine Learning-based Ultra-Reliable Schedul-
ing (SAMUS). The 5G-RGS is based on the 5G specifications
and uses a matrix-based resource grid, to provide and simulate
resource scheduling. The modeled User Equipments (UEs)
function as input for the grid, generating packets and combin-
ing them with parameters such as TTI, modulation order and
RBs needed to transmit the packets. For the calculation of RBs
needed to transmit the specific packet payload, the Transport
Block Size (TBS) is used, stating the size of the transmission
on the Medium Access Control (MAC) layer towards the
physical layer. The latency is calculated for each packet as
the time between instantiating the packet and processing it on
the base station’s side. One TTI is defined as 1 ms, which
corresponds to a Subcarrier Spacing (SCS) of 15 kHz within
the New Radio (NR) specification. The described 5G-RGS
acts as the simulation environment for the SAMUS scheduler
prototype.

The key aspect of this scheduling approach is the harnessing
of parameters such as channel conditions (provided by the UEs
via Channel Quality Indicators (CQIs)) and emerging data
sent by each UE within the network. For the prioritization
of network slices, the Greedy Network Slicing approach is
used from [16]. The prediction of channel quality and the
amount of data is a key feature in the framework. The pre-
diction is done using the Auto-Regressive Integrated Moving
Average (ARIMA) method, which showed promising results
in providing accurate predictions [2] and was trained on data
sets depicting data traffic from Smart Grid (Photovoltaic (PV))
systems as well as Electric Vehicle (EV) charging stations that
we use in our evaluation.

Fig. 7 schematizes the procedure to validate the proposed
method which will be detailed in Section VI-B2. The channel
conditions in terms of mcs values, the amount and arrival
times of the data packets of each 5G slice are inputs of both
systems. The analytical model translates the mcs values into
a degradation model which is then exploited by the proposed
busy-window analysis for the computation of a set of WCRTs
associated to multiple contexts Φ. The SAMUS framework

Fig. 6: SAMUS Framework: Interactions and overview of modules
within the simulation and development framework.

Fig. 7: Illustration of the adopted procedure during the validation
process of our computer response times guarantees.

instead uses a matrix-based resource grid, to provide and simu-
late resource scheduling. The latency (or response time) is then
calculated for each packet as the time between instantiating the
packet and processing it on the base station’s side. The bounds
on the packets latencies obtained by the proposed method are
then compared and validated with the ones of the 5G networks
simulator.

2) Real-world Experiments: For the evaluation of our ana-
lytical model for context-based worst-case response time anal-
ysis with SAMUS, we consider applications and 5G network
slicing configurations, in order to be able to compare results
of the computed context-based response time bounds and
simulation results of a real system. We consider therefore the
following slices with different real-time requirements and crit-
icality, using the 5G network through several users equipments
where each UE is performing multiple data transmissions with
different sizes and arrival times.

• Smart Grid (SG) slice: Data traffic in this slice is modeled
after photovoltaic systems transmitting data proportion-
ally to solar activity, data is obtained from National
Renewable Energy Laboratory (NREL) 6. This slice has
the highest priority.

• Electric Vehicle (EV) Charging slice: EV charging point
communication was modeled based on occupancy data

6https://www.nrel.gov/grid/solar-power-data.html



TABLE III: Overview of the wireless communication settings used
in the experiments.

Channel Bandwidth 20 MHz
5G Subcarrier Spacing 15 kHz
5G MCS Index Table 256 QAM (Table 2)

SR Occasion Every ms

TABLE IV: Overview of the experiment settings.

Packet Size EV 1950 Bytes
Packet Size SG 1500 Bytes

Number of UEs for Each Slice 1
Channel Quality Changing every 20 ms

Adopted M = {(m,µ), (k, ξ)} From real-world measurements

gathered from chargecloud for the German city of Bonn
7. This slice has the second higher priority.

As shown in Table III, we consider a 5G wireless network
parameter configuration with a channel bandwidth of 20 Mhz
that corresponds to 106 available RBs, subcarrier spacing of
15 kHz, packet TTI of 1 ms and mcs or quality of wireless
channel that is monitored and can vary every 20 ms. As
mentioned previously, since the RBs are limited, the execution
of lower priority slices will be delayed whenever higher
priority ones are activated, thereby leading to an increase of
the response time of lower priority slices. We then compare
the results obtained from the context-based analysis with
data obtained from the SAMUS framework considering fixed
packets sizes. In standard 5G configurations, the base station
senses periodically (d−min = 20ms) the SNR of the received
signal and adapts the value of mcs in case the channel
condition improves, deteriorates or remain stable. Also in
this case, the channel quality are predicted using the Auto-
Regressive Integrated Moving Average (ARIMA) method [2].

As summarized in Table IV, each slice is composed by 1
UE which is sending every ms a packet of 1950 Bytes and
1500 Bytes for EV and SG slices, respectively.

a) Worst-Case Response Time Evaluation: Fig. 8 sum-
marizes the results in terms of response times of the EV
charging slice for both simulation and analysis. Note that,
the latencies are given as integer values since each packet is
scheduled within the subframe length of 1 ms in 5G. The blue
bars identify the latency for each packet obtained through the
SAMUS framework for a simulation of 1 minute. Most of the
packets show a response time ≤ 1ms since they are completely
transmitted in the same time slot in which they arrived. In
some cases, some packets need an additional slot to be trans-
mitted (values at 2 ms), while the worst case is shown at the
end of the simulation with a peak of 5 ms. Every peak > 1ms
is caused by multiple factors such as larger packet sizes, lower
mcs and higher interference from the highest priority slice
(SG). Instead of providing a global highly pessimistic worst-
case bound computed for worst possible channel conditions,

7https://new-poi.chargecloud.de/bonn (January 2020)

Fig. 8: Comparison between the response times obtained through
SAMUS simulation (blue bars) and the context-based analysis (or-
ange points).

Fig. 9: Distribution of the response times obtained through SAMUS
and the context-based analysis.

we evaluate the response time for each context Φ in order
to provide a local bound of it (orange points in Fig. 8). The
response time computed analytically successfully bounds the
one obtained by the SAMUS simulator. However, the analysis
introduces a pessimism which does not exceed 4 ms in this
case.

The second limitation of the analytical model is represented
by the values < 0. Each point at -1 represents a context for
which the worst-case response time could not be computed
(i.e., non schedulable contexts). As already discussed in Sec-
tion VI-A2, this happens due to the observed limitations of
schedulability condition and the pyCPA tool which is not able
to provide guarantees in case the current bandwidth bmcs is
extremely low, thereby resulting in a highly loaded system.
As previously, the results of the highest priority slice SG are
omitted because the response time of every packet corresponds
simply to its execution time due to the prioritization.

Fig. 9 shows the distribution of the response times of the
EV charging slice for both analysis and simulation. Obtained
results are comparable from both plots. The most commonly
occurring response time is 1 ms (93% of the cases) while the
remaining 7% of the packets has a higher value, distributed
around 2 and a maximum of 5 ms in the simulation. In the
analysis, the values of the analysis are spread among more
values (between 2 until a maximum of 9 ms) due to the



Fig. 10: Real-world variations of the channel quality for 1 minute of
simulation.

Fig. 11: Zoom of the first and second (1), third (2) and fourth (3)
contexts.

pessimism of the analytical method. The distribution from the
analysis is able nevertheless to drive good guarantees on the
expected distribution obtained experimentally.

Note that the overhead of the analysis approach (i.e., obtain
one point of WCRT for each context in Fig. 8) is directly pro-
portional to the number of applications or slices. In practice,
the number of applications is much smaller than the number
of UEs (in our use case, 2 applications for 18 UEs).

b) Effect of Stationary Degradations: As a last step, we
identify conditions that have a direct effect on the increase
of the WCRT. From now on, we focus mostly on how the
presence on stationary degradations µ have a direct impact
on the response time. TableV summarizes for the selected

TABLE V: Overview of the properties of each context.

Time [ms] mcsinit µ WCRT [ms]
4760 (1) 5 1 2
4860 (1) 5 3 3
8620 (2) 5 7 4
56000 (3) 5 16 9

contexts their time, mcsinit, number of stationary degradations
µ and WCRT. The channel conditions, expressed as mcs
values, of the lower priority slice and observed during the
car-driven experiment are plotted in Fig. 10.

Differently from the mcsinit value which, in this particular
experiment, is always at 5, the number of stationary degrada-
tions µ is the parameter which influences the WCRT. Note that
µ represents the number of times the mcs remains constant
before an improvement. A practical representation of the effect
of µ on the packet latency can be clearly visualized in Fig.
11.

From the experiment in Section VI-A2, we observed that
the longer is the time during which we are not observing
any channel quality improvement, the higher is the WCRT.
Similarly, in this case, we can notice that the WCRT is
proportional to the amount of time in which the mcs remains
stable after a degradation to the lowest value. The longer the
time interval for which the channel quality remains low, the
more the WCRT increases. Starting for the first case where
the WCRT = 2 ms and the mcs remains 5 for only 20 ms, we
can observe a WCRT = 9 ms when the mcs is stable to 5 for
320 ms (16 times d−mcs).

VII. CONCLUSION

We provide in this paper a formal response time analysis
approach for 5G network slicing under dynamic channel
conditions. The provided method considers initial channel
conditions and models of degradation for bounding the re-
sponse time for a given context. Experiments show that with
appropriate characterization of models of degradation, we are
able to successfully and tightly bound the timing of slices
in a given context. Evaluation has also demonstrated that the
number of degradation and their distribution, also considering
duration of stationary degradation, have a large impact on
response times. Future work include incorporating predic-
tive solutions for estimating variations in channel conditions
and incorporating prediction errors in the analysis, as well
as considering more detailed physical models (e.g., multi-
beamforming and steering, effects of signal reflection) of the
environment as part of a context.

ACKNOWLEDGMENT

This work has been partly funded by the Federal Ministry of
Education and Research (BMBF) via the project 6GEM (fund-
ing reference 16KISK038) and is supported by the Federal
Ministry for Economic Affairs and Climate Action (BMWK)
via the project 5Gain under funding reference 03EI6018C.



REFERENCES

[1] Q. Chen, X. Wang, and Y. Lv, “An overview of 5g network
slicing architecture,” AIP Conference Proceedings, vol. 1967, no. 1, p.
020004, 2018. [Online]. Available: https://aip.scitation.org/doi/abs/10.
1063/1.5038976
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