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Fabian Kurtz1, Gösta Stomberg2, Maı́sa Beraldo Bandeira2, Jens Püttschneider2,
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Abstract—Developments such as Industry 4.0, Smart Grids, or
Intelligent Transportation System (ITS) depend on reliable high-
performance communications to enable the underlying control
algorithms. Nevertheless, in most cases it is not viable to provide
network infrastructures exclusively for mission-critical control
traffic or just the general use case. Hence, 5G as well as future 6G
networks entail functionalities such as network slicing to enable
the coexistence of mixed-criticality applications on unified net-
works. An approach capable of supporting slicing in the wireline
domain is Time-Sensitive Networking (TSN). It addresses the
mentioned challenges by enhancing the Ethernet standard with
functionalities required for deterministically bounded low laten-
cies and preemption of high priority data flows. To facilitate its
integration with existing 5G and emerging architectures including
6G and open Radio Access Networks (O-RANs), Software-
Defined Networking (SDN) has emerged for orchestrating the
novel feature set. In this paper, we thus combine TSN and SDN
to design an integrated solution. We present experimental results
on handling communication-demanding control algorithms and
cross traffic simultaneously. Our findings underpin the potential
of SDN-driven TSN for mixed-criticality control applications.

I. INTRODUCTION

Modern technology increasingly relies on highly auto-
mated systems such as Smart Grids, Intelligent Transportation
System (ITS), or Industry 4.0. Their operation necessitates
mission-critical control algorithms which in turn depend on
reliable communications [1]. Yet, as dedicated networks often
are neither available nor viable, these requirements have to
be met with shared resources. This leads to mixed-criticality
traffic which, e.g., can be realized via 5G [2] network slicing
[3, 4]. Here, as well as for future open Radio Access Network
(O-RAN) [5] and 6G [6] infrastructures, Time-Sensitive Net-
working (TSN) has emerged as an technological enabler. First
specified via Ethernet [7] amendments, it is standardized in
IEEE 802.1Q [8], offering scheduling features via time slots,
guard bands, frame preemption, etc. It is particularly relevant
in wireline communications, enabling hard service guarantees.

Centralized User and Network Configuration (CUC, CNC)
serve to manage TSN’s features. Yet, integrating TSN into
existing networks benefits from harnessing established control
planes. Therefore, this work proposes the orchestration of TSN
via Software-Defined Networking (SDN), c.f. Fig. 1. To this
end, a SDN controller is enhanced for interfacing with TSN-
switches. Thereby, the network topology can be monitored and
managed centrally. This is evaluated empirically for distributed
approaches to automatic control of dynamical systems in-
cluding communication-demanding Model Predictive Control
(MPC). These are deployed on embedded platforms acting as
agents. A bottleneck in terms of network capacity is introduced
by forcing traffic flows onto a single link and adding best-effort
services. This highlights the potential of SDN-driven TSN in
challenging mixed-criticality applications such as those found
within Smart Grids. This work is structured as follows: After
an overview of related works in Sec. II, Sec. III details our
approach to SDN-driven TSN. Next, Sec. IV discusses the
evaluation scenario, setup and results. Finally, Sec. V draws
conclusions and offers an outlook on future work.
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Figure 1: Software-Defined Networking driven Time-Sensitive
Networking enables mixed-criticality control applications
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II. RELATED WORKS

While the orchestration of TSN via SDN has been proposed
in related work, several opportunities for further research
remain. Existing studies can be grouped into three main
categories: Those works primarily concerned with specifying
novel architectures for SDN/TSN integration [9, 10], those
centered around analytic or simulative means [11–16] and
approaches build on empirical testing environments [17, 18].
Regarding works belonging to the first group, the Yet Another
Next Generation (YANG) data modeling language as described
in an amendment to IEEE 802.1Q for interfacing with TSN
devices via network management protocols such as NETCONF
or RESTCONF is used in [9, 10]. While providing important
contributions to the overall discussion, such works are limited
in terms of results supporting the proposed approaches.

Other studies are built around analytic models, e.g., presen-
ted by Li et al. [11] for stream reservation and bounded
E2E latencies in avionics. Further papers rely exclusively
on simulation, often lacking real-world traffic models. For
one, the authors of [12] focus on end-to-end latencies for in-
vehicular use, while [13] also studies resource usage efficiency
as a function of guard band size. In [14] an open source
SDN controller, interfacing with TSN via YANG, is coupled
to a simulation implemented in the OMNeT++ framework for
solving a linear optimization problem. Their focus is placed
on assessing various scheduling schemes and their impact
on bandwidth utilization. Traffic classification for accurate
identification and subsequent prioritization of critical data
flows is discussed in [15]. There, OMNeT++ is harnessed
to determine end-to-end latencies achievable by the selected
approach. Building on this work, the same simulation envir-
onment is also applied in a proximate study by the same
researchers in [16]. In an effort to ensure a stable performance
level in highly dynamic network environments, an SDN-based
approach to path reconfiguration is presented.

Finally, research based on measurements performed within
testing setups or even real-world environments, such as dis-
cussed in this paper, is significantly scarcer. A publication
by Thi et al. [17] facilitates the distribution of a highly
synchronous timing signal throughout industrial networks.
Observed results mostly remain below 500 ns and as such
are suitable for a wide range of applications in the context
of Industry 4.0 and beyond. Gerhard et al. [18] employ an
open source SDN controller to drive TSN for Open Platform
Communications Unified Architecture (OPC UA) applications,
but unfortunately do not provide any measurement results
owing to critical implementation issues preventing further
evaluation of the presented setup.

In contrast, this paper provides an empirical study of
SDN/TSN integration on the example of realistic traffic gen-
erated by distributed control algorithms. The impact of cross
traffic on interframe delays of this mission-critical application
is shown to be mitigated, effectively providing the benefits of
dedicated networks on shared infrastructures, thereby support-
ing network slicing and future 5G/6G communications.

III. SOFTWARE-DEFINED NETWORK DRIVEN
TIME-SENSITIVE NETWORKING

Next, we recall the considered distributed algorithms for
automatic control which are drawn upon as time-critical com-
munication tasks. Then we detail TSN and our approach.

A. Distributed Control
We design controllers for a set S = {1, . . . , S} of dynamical

systems. The dynamics of subsystem/agent i ∈ S are

ẋi(t) =
∑

i∈S
fij(xj(t), uj(t)), xi(0) = xi,0, (1)

yi(t) = hi(xi(t)), (2)

where xi ∈ Rni is the system state, ui ∈ Rmi is the system
input, yi(t) ∈ Rpi is the system output, and the functions fij :
Rnj × Rmj → Rni describe dynamic coupling of agents. We
apply two different control methods to (1). Firstly, we design
networked output-feedback controllers for linear, decoupled,
single-input-single-output systems. The control law is

ui(t) = −
∑

j∈S
lijyj(t),

where lij are the elements of a coupling Laplacian L ∈ RS×S ,
cf. [19]. The matrix L is designed to achieve output synchron-
ization, i.e., limt→∞ ∥yi(t)−yj(t)∥ = 0∀i ∈ S, ∀j ∈ S. This
control method requires communication coupled subsystems to
exchange messages once per control interval.

As an alternative, we employ Distributed Model Predictive
Control (DMPC) (1) to stabilize the systems at xi = 0 ∀i ∈ S.
To this end, we discretize (1) to obtain discrete-time dy-
namics fd

ij(·). Moreover, we consider compact and convex
constraints Ui. In DMPC, the agents at sampling instant
tk, k ∈ N measure their current system state x(tk) and
cooperatively solve a discrete-time Optimal Control Problem
(OCP) with horizon N of form

min
xi,ui
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)
, ∀k ∈ {1, . . . , N − 1}, (3b)

x0
i = xi(tk), (3c)

uk
i ∈ Ui, ∀k ∈ {1, . . . , N − 1}. (3d)

The agents then apply the input trajectory’s first part as
control input u(tk) = u0. OCP (3) is solved by distributed
and decentralized optimization methods to obtain a distrib-
uted control scheme. Here, we use the Alternating Direction
Method of Multipliers (ADMM) and the distributed Active Set
Method (ASM) for linear system dynamics and decentralized
Sequential Quadratic Programming (dSQP) for nonlinear dy-
namics, cf. [20, 21]. For a recent overview of other distributed
optimization algorithms applicable to DMPC we refer to [20].
Since the applied numerical optimization schemes are iterative
in nature, DMPC as a feedback control strategy requires agents
to exchange multiple messages per control interval.



B. Foundations of Time-Sensitive Networking

TSN is defined by a set of specifications amended to
IEEE 802.1Q [8], in an effort to enable bounded latencies,
i.e., deterministic networking, based on the Ethernet stand-
ard [7] for time-critical applications. Most relevant for this
work are the time-aware shaper, time slots and guard bands
originally defined in IEEE 802.1Qbv, as well as preemption
(IEEE 802.1Qbu). As shown by the top row of Fig. 2, the
time-aware shaper enables scheduling by introducing cyclic
slots on the Ethernet network, effectively acting as Time-
Division Multiple Access (TDMA). Hence, different traffic
classes can be established, allowing the prioritization of critical
communication versus other flows such as best-effort data.
Nevertheless, issues may arise as this does not allow the
interruption of frames currently being transmitted.

Thus, should e.g. a best-effort frame arrive within the tail
end of its assigned slot it can intrude on the slot reserved
for critical communications, as illustrated by the blue packet
above the green slot in Fig. 2 (top row). As such a violation
of guarantees is unacceptable, TSN offers guard bands to
prevent such situations (c.f. middle row Fig. 2). To ensure
that no packet can be send during guard bands, its length
has to equal the maximum frame size allowed. However, this
approach reduces overall network capacity. Its impact can be
minimized via frame preemption as shown in the bottom row
of Fig. 2. Here, the ongoing transmission of Ethernet frames
can be paused at guard bands, resuming once the assigned
periodic time slot reappears. Thereby, wasted link capacity is
reduced. Additionally, guard bands can be minimized to the
size of a partial packet, increasing usable data rate even further.

In terms of configuration topology TSN employs CNC and
CUC. Possible mechanisms such as Management Informa-
tion Base (MIB) via Simple Network Management Protocol
(SNMP) or YANG via NETCONF/RESTCONF are also well
established in Ethernet. Optimal integration into existing com-
munication networks can be achieved by building on SDN’s
powerful and proven set of features for network orchestration.
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Figure 2: Overview of Ethernet enhancements introduced by
TSN as used in this work. Time slots and guard bands specified
by IEEE 802.1Qbv and 802.1Qbu preemption enable hard
service guarantees for mixed-criticality traffic.

C. Proposed Approach to SDN-driven TSN

Fig. 3 illustrates our concept for orchestrating TSN via
SDN. Based on the SDN paradigm, the design can be split
into the three layers of application, control, and data plane.
Applications, in this case the highly time-critical distributed
control algorithms as well as best-effort background traffic,
exist on the top level. They sit alongside user-side interfaces
such as graphical or command line options, and conceptually
can utilize the northbound Application Programming Interface
(API) to convey their requirements and commands to the SDN
controller, e.g. via Representational State Transfer (REST).
This approach hence facilitates application aware network
configuration, dynamic communication infrastructure control
loops and overall highly automated system operation.

Building on previous works, we here employ a self-
developed SDN controller [22] which in turn is forked from the
open source Floodlight project [23]. Aside form a broad range
of features and intrinsic network monitoring capabilities, we
enhanced this entity with support for reconfiguring features
offered by TSN. This includes setup and parametrization
of functionalities such as guard intervals, time slots of the
time-aware shaper and preemption. The SDN controller thus
translates commands issued via the northbound API into
concrete configurations. By traversing the southbound API,
traditionally represented by the de-facto standard OpenFlow
protocol, these are transferred to the data plane. At this level,
TSN-enabled Ethernet switches handle the physical forwarding
of data packets according to the SDN controller’s directives.
This functionality is enabled by way of a corresponding
module, handling SDN/TSN interaction and implemented in
this work via REST over Secure Shell (SSH) tunnels. Thereby,
bounded deterministic latencies and hard prioritization via
time slot scheduling as offered by TSN is orchestrated through
our centralized SDN controller. The design also supports 5G
network slicing, including on the air interface as demonstrated
in [24], thus extending these capabilities to TSN.
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Figure 3: Concept for integrating TSN into SDN-driven com-
munication infrastructures. The SDN controller monitors the
network and translates commands issued via a REST-based
northbound API into configuration parameters for the TSN-
enabled data plane, thereby enforcing hard service guarantees.



IV. EVALUATION

This section provides an overview of the evaluation scenario
and setup, as well as a detailed discussion of achieved results.

A. Evaluation Scenario & Experimental Setup

The evaluation setup created for the purposes of this work
is shown in Fig. 4. Two NXP LS1021ATSN serve as data
plane, i.e., TSN switches, offering a per link data rate of
100Mbit s−1. They connect to each other, as well as to
embedded computers (i.e., Raspberry Pi 3) acting as dis-
tributed control agents. However, unlike its peers Agent 4
does not run control algorithms, but introduces generic best-
effort cross traffic into the network, fully saturating the middle
link. Thereby, a resource conflict is generated on the central
link between both TSN switches. Network orchestration is
performed by an SDN controller. It is a self-developed solution
used in previous works [25] and based on the open source
Floodlight controller [23]. Among its tasks is the configuration
of the time-aware shaper to ensure hard service guarantees for
control applications in a mixed-criticality environment. The
various traffic streams’ dissimilar priority levels are encoded
into the field offered by Virtual Local Area Networks (VLANs)
to specify service classes and acted upon by the switches.

TSN depends on highly synchronized network entities to en-
able the time slot based concept required for ensuring bounded
latencies. Therefore, we employ the Precision Time Protocol
(PTP) [26] to establish a firm time reference throughout the
setup. Hence, timing variance at the different devices is min-
imized, allowing stable operation which in turn provides the
high confidence levels required for the subsequent evaluation.
Observed measurement results are given in Fig. 5. As clearly
shown, the TSN switches’ hardware assisted PTP implementa-
tion yields significantly more homogeneous and precise offsets
in contrast to the software solution employed at the agents.
While hardware PTP shown on the left mostly exhibits delays
in a range of approximately ±100 ns with peaks well into
the 300 ns range, software PTP fluctuates primarily between
±20 µs, with outliers below 100 µs. Taking this into account,
results presented in the following are rounded to 100 µs.

SDN Controller

Agent 1 Agent 2

Agent 4 Agent 3

Resource Conflict

TSN Switch TSN Switch

Time critical control traffic Best-effort traffic

Figure 4: Setup for evaluating SDN-driven TSN comprised of
two switches orchestrated by an SDN controller. Four agents
execute distributed control algorithms and generate best-effort
traffic, thereby creating a resource conflict on the central link.

0 500
Time [s]

1000 1500 2000

max=331ns

min=-383ns

O
ffs

et
 [n

s]

0

200

400

-400

-200

max=76.8µs

min=-30.8µs

O
ffs

et
 [µ

s]

0

-20

-40

-60

20

40

60

80

100

0 300 600 900 1200
Time [s]

1500

Figure 5: Synchronization of the evaluation setup. Software
based (control agents, left) vs. hardware based PTP (TSN
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As control applications, one scenario with the output-
feedback controller and three scenarios with DMPC are ana-
lyzed for networks with three agents (ni = 2, mi = pi = 1).
For the output-feedback controller, we consider a network of
fully coupled undamped oscillators as individual subsystems
(Scenario 1), design L, and choose a sampling time of 15ms.
In case of DMPC, we design controllers with N = 5 and a
sampling time of 200 ms for a linear chain of masses system
and apply either ADMM (Scenario 2) or ASM (Scenario 3).
We use five ADMM iterations per MPC step to solve OCP (3)
in Scenario 1 and solve the OCP to optimality with ASM in
Scenario 2. Additionally, we design a controller with N = 4
and a sampling time of 100 ms for a network of three fully
coupled nonlinear Van der Pol oscillators with parameters
from [27] and apply dSQP (Scenario 4). In dSQP, we run
25 inner iterations per MPC step to solve OCP (3). We use
qpOASES [28] to solve the arising optimization problems
in ADMM, CasADi [29] to compute sensitivities, and the
Lightweight Communications and Marshalling (LCM) [30]
library to exchange iteration variables between agents.

B. Evaluation Results

Fig. 6 shows the measured interframe latencies for the
DMPC scenarios. Each of them is analyzed under three dif-
ferent traffic conditions. Black dots in the subgraphs mark the
respective mean interframe latencies. The left column displays
scenarios with inactive TSN and no cross traffic. Hence, these
distributions represent the ideal traffic patterns generated by
the employed control algorithms. Any deviation thus implies
unwanted interference with application behavior, i.e., as caused
by a lack of control traffic prioritization. Therefore, the ideal
result achievable by the presented SDN-driven approach to
TSN is the avoidance of such variations.

The control applications send messages with an interframe
delay of around 1ms to solve the OCP. Also, messages with
larger interframe delays occur when waiting for the following
control interval. This applies in case of ADMM and ASM,
whose communication behavior features interframe delays just
below 200ms respectively slightly above 190ms, as depicted
in the corresponding rows of the leftmost column in Fig. 6.
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The center column shows results including cross traffic with
inactive TSN, i.e., as can be observed in traditional Ethernet
based networks. In all three DMPC scenarios, cross traffic
increases interframe delays thereby interfering with the various
algorithms. As a result, the time required to solve the OCP
also increases, which could deteriorate the control performance
and thereby impact mission-critical applications. In case of
ADMM the distribution widens at slightly above 30ms and
around 65ms, with individual outliers going beyond 200ms.
ASM is not impacted as strongly. Yet, the overall latencies
increase visibly with more values scattered up to 190ms.
Lastly, dSQP forms two bulges from 5ms to 20ms. Thus, all
three cases illustrate the distinct effect of cross traffic on timely
delivery of traffic generated by distributed control agents as
caused by resource conflicts (c.f. Fig. 4), typically encountered
in shared/sliced (public) communication infrastructures.

Finally, the right column of Fig. 6 presents results with

Table I: Mean delays observed in the evaluation of DMPC,
highlighting TSN’s mixed-criticality performance.
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Figure 7: Closed-loop oscillator trajectories with cross traffic
and inactive TSN (left) and active TSN (right). The desired
synchronous oscillation is only possible with active TSN.

cross traffic and active SDN-driven TSN. In all cases, inter-
frame delay distributions appear virtually identical to those
without competing data flows, as shown on the very left.
This highlights how TSN ensures the uninterrupted and correct
execution of the selected automatic control algorithms despite
resource conflicts. Hence, the viability of our setup and its
underlying technologies for mixed-criticality applications, as
outlined at the start of this work, is demonstrated and validated
by way of a realistic application scenario.

Tab. I summarizes the mean interframe delays for the
analyzed DMPC and traffic scenarios. Results are rounded
to 100 µs which, as previously discussed, serves to account
for clock jitter highlighted in the Fig. 5 PTP chart. Row one
and three present identical values, with a very minor variation
in ADMM caused by the slightest variance in measurement,
which is to be expected in an empirical study. In contract,
the middle row shows a clear deviation from optimal results
as caused by interfering best-effort communication, thereby
aligning with the previously discussed delay distributions.
Hence, this further illustrates the effectiveness of SDN-driven
TSN to provide hard service guarantees in challenging mixed-
criticality communication environments, e.g. shared networks.

In addition to the DMPC scenarios, we also provide an
example from output-feedback control to graphically illustrate
the impact of TSN - or lack thereof - on control algorithm
performance. Fig. 7 shows the closed-loop trajectories of the
controlled oscillators for two different network scenarios. On
the right hand side of the plot the desired control performance
is shown, i.e., output synchronization of the three agents to
a common oscillation. This control behavior is facilitated by
TSN, which guarantees the timely communication of mes-
sages relevant for the control algorithm. Performance is thus
effectively identical to what can be measured within a com-
munication network dedicated exclusively to mission-critical
application traffic. Conversely, the left of Fig. 7 shows the
closed-loop result without TSN. Here, cross traffic interferes
with the control application. Thus the desired outcome as
represented by synchronized oscillation is not achieved. In
summary, this aligns with the performance level expected from
and indicated by the previously discussed network delays.
This underlines the suitability of our proposed approach to



SDN-driven TSN for supporting and enabling hard service
guarantees regardless of interfering traffic. It thus enables
wireline network slicing in mixed-criticality use cases within
application domains such as Industry 4.0 or Smart Grids.

V. CONCLUSION AND OUTLOOK

In this work, we present an approach to SDN-driven TSN
for mixed-criticality control applications such as Industry 4.0
or Smart Grids. For this, TSN is integrated with SDN. Thereby,
novel features introduced to Ethernet by IEEE-defined stand-
ard extensions forming TSN become available for centralized
and application aware configuration via SDN. This includes
the time-aware shaper with cyclic slots as well as guard
bands and frame preemption. A purpose developed testing
environment is presented and serves to empirically evaluate
our approach on the example of challenging traffic generated
by various distributed real-world control algorithms. Here, a
resource conflict between agents performing calculations and
exchanging values across a single central link and generic
best-effort traffic is created. Measurement results focus on
interframe latencies to study the impact of cross traffic on
agent communication. Additionally, output trajectories are
given to visually illustrate the impact of competing packet
flows, or lack thereof, on control. In summary, it is shown
that TSN allows mixed-criticality environments to achieve a
performance level identical to dedicated networks. Thus, the
approach lends itself to realizing wireline network slicing.

Future work will focus on enhancing and extending the
setup via integration into a realistic Smart Grid deployment
scenario in scope of a cellular energy grid laboratory demon-
strator. Moreover, ongoing O-RAN and 6G research will
be strengthened by combining our approach with machine
learning to continuously improve parametrization. Here, 6G
energy efficiency will also be studied in depth.
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