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Abstract—The energy grid is facing a paradigm shift away
from traditionally centralized electricity generation towards dis-
tributed renewable energy resources. These so-called Smart Grids
(SGs) require a mechanism for balancing power consumption
and generation. In this context, Blockchain (BC)-based Smart
Contracts (SCs) have emerged as a means to facilitate distrib-
uted transactions without requiring trust among the involved
parties. Yet, resulting communication traffic loads need to be
considered. Here, 5G network slicing promises to enable the
coexistence of such mission critical services on a single shared
physical communication infrastructure. Nevertheless, challenges
in terms of latencies and resource efficiency exist. As static
slicing mechanisms can be inefficient, we propose a predictive
Machine Learning (ML)-driven approach to Resource Block (RB)
scheduling by harnessing the Configured Grant (CG) mechanism
in the 5G uplink. The developed solution is evaluated on the
particularly challenging example of an energy grid driven by
SCs. Based on an energy model derived from a real-world setup,
we generate corresponding SC communication traffic. For this,
predictive 5G slice radio resource allocation is employed to
demonstrate significant improvements in terms of latency and
spectrum usage efficiency. Thus, ML-enabled 5G network slicing
for mission critical SCs is evaluated within large-scalable SGs.

I. INTRODUCTION

Modern societies increasingly depend on services provided
by so-called Critical Infrastructures (CIs), including energy,
water, health, transportation, public safety and communication
systems. In this context a wide variety of use cases for Block-
chain (BC)-driven mechanisms have emerged to support de-
centralized services such as accounting or facilitating transac-
tions. Nevertheless, their associated traffic loads and criticality
require a high level of reliability and performance, not always
attainable using traditional communication technologies. Here,
5G enables network slicing, which promises to enable the
parallel operation of mission critical applications by providing
virtually dedicated networks on a shared physical communic-
ation infrastructure. In this work, the Configured Grant (CG)
mechanism introduced by 5G is employed to circumvent the
associated slice scheduling delays. However, this requires the
timing and size of transmissions to be known in advance.
By anticipating future communications via Machine Learning
(ML), base stations can grant access to User Equipments (UEs)
without the latter having to request Resource Blocks (RBs).
In contrast to established solutions, this may reduce latencies
and increase radio spectrum usage efficiency. For evaluation
purposes, we select the particularly challenging application
scenario of a Smart Contract (SC)-enabled Smart Grid (SG).
Specifically, we employ SCs based on the highly scalable

Hyperledger Fabric (HLF) [1] to drive grid operation. This
enables the balancing of energy generation and demand on a
local level, thus establishing a cellular energy grid topology. In
turn, the need for additional power transmission lines [2], oth-
erwise necessary to support the transition towards renewable
electricity generation, is reduced. This setup mirrors cellular
communication networks as shown by Fig. 1. To achieve
realistic results, a detailed energy load/generation model based
on real-world data [3, 4] is employed. This drives the highly
dynamic and realistic creation of HLF-based SCs within a
physical testbed setup. The resulting transmissions are first
used to train a Long Short-Term Memory (LSTM)-based ML
model, which then serves as input for the predictive scheduling
of 5G network slices, performed via a previously developed
simulation framework [5]. In summary, this work harnesses
ML to predict the resulting mission critical SC traffic, which
serves to achieve a reduction in 5G uplink scheduling latency
and increase slice resource usage efficiency.

This paper is structured as follows: Sec. II discusses selected
related works to highlight this papers’s key contributions
relative to the state-of-the-art. Next, Sec. III provides insights
on the developed dynamic predictive 5G network slicing
approach. The cellular grid model, the derived SC traffic
generation and the ML-based approach to communication load
prediction are presented in Sec. IV. Next, Sec. V details the
evaluation scenario, with results discussed in Sec. VI. Finally,
a conclusion and an outlook are given.
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II. RELATED WORK

This section provides an overview of related work regarding
applications of Blockchain-based Smart Contracts for energy
load balancing as well as the topic of machine learning driven
resource allocation in the context of 5G network slicing.
The authors of [6] identify potential issues of 5G and beyond
in areas of security, automated management requirements
as well as availability and outline approaches to address
these challenges via decentralized Blockchain technologies.
In contrast, [7] analyzes Blockchain based decentralization
approaches for enhancing the National Institute of Stand-
ards and Technology (NIST) conceptual smart grid model.
The work of [8] compares HLF as a key representative for
private Blockchains and Ethereum as an established public
variant in the context of 5G communications. The authors
demonstrate HLF to be a sound choice for systems with
computational and radio resource constraints, such as those
of cellular communication networks. A decentralized Peer-to-
Peer (P2P) electricity trading scheme for private consumers
and prosumers with Photovoltaic (PV) systems is proposed by
[9]. The analysis focuses on the fairness and efficiency of the
trading scheme, with HLF serving as platform. In contrast,
a field deployment of a HLF-based P2P Smart Contract
trading network is given in [10]. Reduction of electrical peak
loads as well as individual energy bills are achieved and
validated on the example of a real-world microgrid containing
four households. The deployment of HLF and Ethereum for
energy trading use cases, i.e. akin to the former’s role in this
work, is analyzed by [11] and [12]. They conclude that HLF
outperforms Ethereum in terms of scalability of the transaction
throughput, yet compromises in terms of decentralization. The
influence of communication delays on the transaction flow of
HLF are studied by [13] and [14]. Both show a reduction in
the Blockchains’ throughput, with the latter observing system
breakdowns in the worst case. Hence, hard service guarantees
are crucial to ensure reliable operation of future cellular power
grids based on Smart Contracts.

Several approaches of implementing Artificial Intelligence
(AI) and ML for improved resource allocation in 5G exist in
literature. An overview of ML assisted applications for Radio
Access Network (RAN) slicing and automated Radio Access
Technology (RAT) selection is given by [15], who also discuss
corresponding research challenges. A Deep Reinforcement
Learning (DRL) based model for the automated manage-
ment of communication, computing and caching resources
is presented by [16]. Another approach to DRL is used in
[17], minimizing RB allocation in a 5G RAN. The authors
achieve high RB utilization while fulfilling the requirements
of relevant network slices. In [18] various AI based strategies
for 5G resource management are considered. It focuses on
long-term slice orchestration. Instead of selecting Recurrent
Neural Networks (RNNs), traditionally deployed for time-
dependent regression, the authors develop a Convolutional
Neural Network (CNN) which allows for the integration of
data traffic and geographical dependencies. In contrast, this

paper focuses on enabling hard service guarantees at low
latencies for critical SC traffic as generated by the SG. Thus
reliable grid operation is ensured while providing efficient use
of shared radio resources in a sliced 5G network.

III. DYNAMIC PREDICTIVE 5G NETWORK SLICING

This section provides an overview of the RB scheduling
mechanisms employed for implementing dynamic predictive
5G network slicing via ML. Also, the overall framework
developed for scheduling uplink radio resources in a SC-
enabled cellular grid is introduced. In this work we employ our
purpose-developed network slicing framework [5], designed
to simulate static, dynamic reactive and dynamic predictive
slicing, c.f. Fig. 2. It adheres to the 3GPP’s 5G specifications
[19] and supports the CG mechanism for assigning uplink RB
to UEs. Specifically, CGs allow circumventing the traditional
process of using Scheduling Request Occasions (SROs) to
request radio resources by defining fixed allocations in the
future. The challenge associated with this method arises as
the precise packet sizes and timing (on the order of ms)
need to be predicted to derive the amount of RBs required
in each slice. In case too few RBs are allocated proactively,
transmissions of the mission critical SC and grid control slices
have to be re-scheduled. Such mistakes increase end-to-end
latencies, counteracting this key goal. Conversely, if too many
RBs are assigned, radio resource efficiency is reduced at
the expense of less critical network slices. A perfect model
(i.e. 100% prediction accuracy) would reduce the scheduling
latency to 0ms for any given data transmission, and maximize
spectral efficiency. As energy generation and consumption are
highly dynamic, it is particularly challenging but also mission
critical to predict this traffic. It results from SCs, as created
by customers within a cellular grid.

The upper part of Fig. 2 depicts the traditional reactive
approach to allocating uplink resources. While RBs are used
highly efficiently, as only requests for those which are actually
required are sent, a delay is incurred until any uplink trans-
mission can occur. Alternatively, static slicing can be used,
shown in the middle. Here, resources are scheduled ahead of
time, but in fixed intervals and sizes. This approach is thus
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Proposed Predictive 5G Slice Resource Allocation Schemes
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Figure 3: Framework Developed for Predictive 5G Slice
Scheduling in Smart Contract enabled Cellular Power Grids

particularly well suited for demanding traffic flows with highly
regular characteristics in terms of timing and transmission
sizes. Otherwise, inefficiencies and/or additional delays arise,
as caused by reactive scheduling for irregular traffic. Finally,
the proposed dynamic predictive slicing aims to avoid these
issues by harnessing ML to accurately predict future RB usage.

The overall framework for studying the trade-off between
latency and RB usage efficiency is depicted in Fig. 3. Its top
left corner shows the building blocks of our power grid model,
which aims to balance local energy consumption and supply
via a BC-based SC trading scheme. Thus, a robust decent-
ralized energy market is created, allowing participants to buy
and sell energy based on individual demands. The resulting
SC traffic is used as input for the ML-driven communication
prediction model. Finally, this predicted transmissions are used
to drive the CG-based 5G network slicing scheduler.

IV. BLOCKCHAIN-BASED SMART CONTRACTS FOR
CELLULAR POWER GRIDS

This section details the generation of real-world Smart Con-
tracts and the ML model for predictive 5G slice scheduling.

A. Hyperledger Fabric

A HLF network is implemented to execute an energy trading
scheme between a PV plant and consumers in a cellular grid.

1) Structure of the Hyperledger Fabric Framework: The
chosen HLF network design supports the goal of generating
real-world data traffic. Two HLF organizations representing
consumers respectively producers of electricity are imple-
mented. As shown in Fig. 4, each organization maintains
an orderer node, an anchor/leading peer for communicating
with the ordering service and internally, as well as additional
peers for fault-tolerance. A third orderer, run by a neutral
organization, enables the consensus mechanism RAFT [20]
which requires the majority of orderer nodes to be working
and non-fraudulent. Cryptographic credentials are generated
using HLF cryptogen, which replaces certificate authorities in
this work. The HLF nodes are deployed as Docker containers
which are connected using swarm mode.
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Figure 4: Hyperledger Fabric Framework for Enabling Smart
Contracting in Cellular Power Grids

2) Block Interval Configuration: The generation of blocks
on the smart contract Blockchain significantly impacts the
resulting communication load. To ensure a cellular energy
grid’s frequency stability, European Network of Transmission
System Operators for Electricity (ENTSO-E) specifies that
sufficient generating capacity (secondary reserve) has to be
available within a maximum of 5min. Hence, fixed block
transmission intervals (BIs) of 1min are generated. A Block
Interval (BI) consists of two phases:

• Transactions Transmission: Achieving a throughput of
3 transactions per second, the first 40 s are reserved
for transmitting up to 120 previously defined energy
contracts. Here, no blocks may be transmitted.

• Block Transaction: A block containing the ordered trans-
actions of the BI is transmitted on the 50th second of the
block interval. The next 10 s serve to ensure successful
block transmission, regardless of any communication
issues (e.g. latencies), as well as to regulate energy flows.

HLF offers two parameters to control the occurrence and size
of blocks. The BatchTimeout parameter defines how long the
ordering service waits after receiving the first transaction until
it creates a new block. It is hence set to 50 s. BatchSize controls
the maximum number of messages within a block as well as its
size in Byte. To preclude premature block creation, its values
are set to MaxMessageCount = 1000 and AbsoluteMaxBytes
= PreferredMaxBytes = 1GB.

B. Machine Learning Models for SC Traffic Prediction

In preliminary studies LSTM outperformed Seasonal
Autoregressive Integrated Moving Average (SARIMA) and
random forests for time-series prediction of SC traffic. Hence,
its implementation is discussed below.

1) Preprocessing of the Generated Time Series Data Sets:
First, the smart contract transmission dataset is split into 70%
training, 20% validation and 10% test data sets. The data is
subsequently scaled to the interval of [0, 1] using scikit-learn’s
MinMaxScaler [21]. Preserving causality, the scaler is solely
fitted on training data which is not shuffled. Next, feature-
label pairs are generated using a rolling window. The input
sequence has the length of N , which is a tunable parameter,
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and an output length of 1. After that, M input-output pairs
are packed into a training batch. Hyperparameter tuning is
executed using bayesian optimization.

2) LSTM Implementation: The model is implemented us-
ing Keras [22] and Tensorflow [23], utilizing the tensor-
flow.keras.sequential API to stack two layers. LSTM serves
as its first layer, with the cell number considered as hyper-
parameter. On top of this a dense layer is stacked to reshape
output tensors and the number of predicted features to the same
dimension, namely one. Mean Squared Error (MSE) is chosen
as loss function, which delivers good performance in general
by penalizing large errors. The optimizer algorithm determines
how errors are propagated through the network Here, the adam
optimizer is considered a good choice since it finds an optimal
compromise between learning the most relevant as well as less
frequent features. Another hyperparameter is the learning rate.

3) Time Aggregation: Model accuracy is enhanced via time
aggregation. Hence, the original sequence’s temporal resolu-
tion is reduced by integrating consecutive samples into a single
sample. We apply this strategy to train multiple sub-models on
different aggregation levels and calculate an aggregated model
as a weighted sum of the partial predictions. Longer-term
forecasts broaden the overall prediction in the time domain
and thus reduce the challenge of exact timing, while short-
term forecasts capture the dynamics of bursts in data traffic.

V. EVALUATION SCENARIO & EXPERIMENTAL SETUP

To evaluate the setup, real-world Blockchain data traffic is
generated using a local energy balancing scenario. For that

purpose, first the Kreuzviertel area in Dortmund, Germany
(Fig. 5-A) is used to model a power grid cell. Next, the
number of participants, consisting of households and small
businesses like bakeries and restaurants, is determined using
publicly available map data [3]. For each consumer type a
matching power consumption profile, e.g. of single household
as depicted in Fig. 5-B, is applied via the real-world based
reference data of [4]. The final power consumption model as
shown by the red curve in Fig. 5-C results from summarizing
the demand profiles of the energy cell’s participants. Next,
the power feed-in provided to the energy cell by a PV plant
needs to be considered. This data is provided by the local
utility DEW21 [2] and is shown in Fig. 5-C (blue). Here a
fluctuating discrepancy between demand and supply can be
seen, highlighting the need for dynamic and decentralized
energy contracts. Thus, a minute-wise smart contract schedule
is derived from the power delta, as shown in the upper half
of Fig. 5-D, to ensure reliable grid operation. Four kinds of
smart contracts are considered. An intra-cell variant is used
to distribute power from the PV plant to the consumer of the
local smart grid cell. In case a power surplus can be sold to an
adjacent cell, inter-cell export contracts are used. Conversely,
inter-cell imports are used to supply consumers from outside
the local cell in cases of insufficient PV power output. As
these SCs have no expiration date, they are dissolved manu-
ally whenever necessary using contract terminations. Finally,
this strategy results in Blockchain transmissions with highly
variable data rates as shown in the lower part of Fig. 5-D.



Experimental Setup for Predictive 5G Network Slicing

As discussed in the previous section, a realistic energy
model of a local cellular power grid is developed and em-
ployed to drive the creation of Blockchain-based smart con-
tracts. While electrical power flows remain purely virtual,
the corresponding Blockchain network is setup on a physical
testbed. The setup consists of four servers equipped with
Intel Xeon-D1518 CPUs (4x 2.2GHz), 16GB RAM, 1Gbps
Ethernet via Intel I350 NICs and Ubuntu 18.04.5 LTS. This en-
ables the implementation of the aforementioned HLF-network,
allowing real-world data traffic between actors to be captured
for ML-analysis. The data traffic is subsequently used as input
for the proposed predictive 5G network slicing scheduler.

Table I: 5G Network Slicing Configuration

Slice Smart Contracts
(SCs)

Grid Control
(IEC 61850 MMS)

Best Effort
(BE)

Slice Priority
& 5G Profile

high
mMTC

high
URLLC

low
eMBB

Data Rate average: 20 kbps
burst: 285Mbps

122Byte
every 2 TTIs 2370 kbps

Latency
Requirements high highest low

Static Resource
Allocation per

UE and TTI [Byte]
1000 122 ∼ 1800

Overall, a setup with three 5G radio network slices is
considered, as shown in Tab. I. First, the SC slice serves
to support the mission critical balancing of regional energy
flows by transmitting traffic of HLF orderers, anchors and
peers as represented within the testbed (c.f. Fig. 4). Due to
the large number of nearly 700 participants within a small
geographic area, the associated data rate is highly variable as
individual transmissions may occur simultaneously. Addition-
ally, a smart grid control slice transmits International Electro-
technical Commission (IEC) 61850 Manufacturing Message
Specification (MMS) data which is essential for controlling the
cellular grid. Its latency requirements are even more stringent
and thus serve to validate if the proposed approach is capable
of handling multiple challenging traffic types, i.e. high priority
slices. Finally, a Best Effort (BE) slice with comparably high
data rate but low latency requirements is considered. Thereby
full utilization of all available 5G air interface resources is
ensured. The radio specifications used for configuration of the
developed 5G scheduler framework are shown in Tab. II. To
judge the effectiveness of the employed ML-based approach
to predictive 5G network slicing, results are discussed in the
following. A specific focus is placed on scheduling latencies
as well as efficiency in terms of radio resource utilization.

Table II: 5G Radio Configuration for 5G Slice Scheduling

Transmission
Time Interval

(TTI) [ms]

Channel
Bandwidth

[MHz]

Subcarrier
Spacing

(SCS) [kHz]

Modulation
and Coding

Scheme (MCS)

Scheduling Request
Occasion (SRO)

Frequency [ms−1]
1 20 15 15 (QAM-64) 1

VI. EVALUATION RESULTS

Depicted in Fig. 6 are the results observed in terms of
average latencies caused by scheduling 5G uplink access.
Values for the Smart Contract slice are represented by blue
bars, with green indicating Grid Control traffic and red con-
stituting Best Effort transmissions. Starting from the left, a
static allocation of available Radio Resource Blocks (RBs) is
used as a baseline reference. As dynamic changes in demand
can not be accommodated, slices have to be configured for
peak data rates. Accordingly, critical applications are treated
preferentially compared to BE traffic, which has to wait
for any remaining capacity causing the increased latencies
observed. In case of dynamic reactive scheduling all three
slicing achieve the same 1ms latency. For SC and grid control
traffic this is an increase compared to the static variant. Both
may have to wait for their chance to access the radio channel
as BE packets now fill in any short gaps that may arise in
their transmission patterns. Hence, the delay experienced by
BE users is improved slightly. Next, results of a dynamic
predictive scheduling mechanism are shown, which bases on
a manually configured analytic approach. It is derived by
analyzing the respective traffic patterns and serves to assess
possible gains unlocked by the subsequently given ML-based
solution. Specifically, a decomposition of SCs transmissions
overlapping sub-processes is used, namely communication
by peers, anchors and orderer nodes. This strategy is also
applied to the ML-based approach. Relative to static slicing,
SCs experience a 21% latency increase, while other services’
delays are effectively reduced to zero. It can be seen as an in-
dicator, that their mainly periodical traffic patterns are captured
efficiently by analytic modelling, while Smart Contracts are
more complex. This observation is underlined by the results
of ML-driven predictive slicing. Here the latency penalty for
SCs is reduced to 5%, but nevertheless falls short of the static
case’s performance. The highly variable flow of energy and
the resulting Smart Contract data transmissions were thus not
captured successfully on a ms level, as required for optimal
5G scheduling. Nevertheless, detailed analysis reveals that the
points in time when data packets need to be sent is predicted
with high accuracy. However, the anticipated transmission
size, i.e. the amount of resources required, proves insufficient.
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Figure 6: Reactive and Predictive 5G Network Slice Schedul-
ing Latencies, Demonstrating the Effectiveness of ML
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Figure 7: Efficiency of Radio Resource Usage for Traditional
and ML-driven 5G Network Slicing Strategies

This is addressed by over-provisioning, i.e. scaling the size
of predicted transmissions by a factor of five. As shown by
the rightmost group of bars, this enables latency reductions of
61% for SCs transmissions, which comes at the cost of slightly
worse performance for grid control and BE slices. Hence,
ML combined with over-provisioning yields significant gains
relative to static, dynamic reactive and analytic approaches.
However, it is crucial to consider if these improvements impact
efficiency in terms of 5G radio resource usage. While reactive
scheduling only uses RBs if required, this high efficiency
comes at the cost of increased latencies as previously detailed.
As shown on the left of Fig. 7, static slicing accounts for
peak data rates by allocating all resources available, inevitably
causing inefficiencies (red). In contrast, dynamic predictive
slicing anticipates transmissions, freeing up about 45% (green)
of 5G RBs on average. This applies to both analytic and
ML-based strategies, with the latter reserving slightly more
unused RBs (red) but incurring a lower latency penalty versus
static slicing of plus 5% compared to 21%. Finally, com-
bining ML with over-provisioning requires the reservation
20% more resource which on average remain unused (i.e.
mis-predictions/allocations). Crucially, this enables latencies
to be reduced by 61%, representing an acceptable compromise
for the chosen application. All dynamic mechanisms use the
same amount of RBs as optimal (i.e. 100% correct) predictive
scheduling. Yet, the amount of reserved but unused spectrum
varies, resulting in the discussed latency/efficiency trade-offs.

VII. CONCLUSION AND OUTLOOK

In this work we present a Machine Learning driven ap-
proach to predictive 5G network slicing, on the example of
blockchain-based SCs for future cellular Smart Grids. First,
a detailed energy model is created to drive real-world SC
communications on a physical testbed. It forms the basis for
creating a LSTM model to predict transmissions of the mission
critical blockchain on the order of ms. These predictions drive
our 5G standard-based network slicing framework to accur-
ately simulate pro-active scheduling behaviour. The efficacy
of this approach to ML-driven Smart Contract data traffic
prediction is clearly demonstrated as uplink latency reductions
of 61% are achieved, while freeing up 37% of radio resources
for use by other slices and applications. Future work will focus
on transferring the proposed solution onto a live 5G network.
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