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Abstract—Due to the emerging challenges with future 6G
networks such as high data rates and the need for remarkably
low latency, future wireless communication systems must be
planned extremely carefully and with respect to 6G’s various
applications. Our previous work DRaGon has shown the potential
of leveraging Machine Learning (ML)-based channel models, but
its high model complexity lacks embedded system application. In
this work, we present TinyDRaGon as a novel signal strength
prediction method that combines expert knowledge from the
mobile communications domain with lightweight ML methods
to achieve accurate and computationally efficient predictions.
In a comprehensive performance evaluation, the performance of
TinyDRaGon is compared to both real-world measurements and
a vast range of state-of-the-art channel modeling methods. It is
found that TinyDRaGon achieves similar or even slightly better
accuracy than its deep learning predecessor while also being ten
times less time-consuming during training, less computationally
expensive, and less energy-consuming. This makes TinyDRaGon a
promising channel prediction candidate for pervasive intelligence
within future 6G communication networks.

I. INTRODUCTION

Pervasive intelligence is expected to become one of the core
concepts of future 6G networks [1]. This development marks a
transition from a purely infrastructure-centric view on network
optimization (e.g. efficiency of spectral resource usage, energy,
Quality of Service (QoS)) to recognizing the potential of the
client devices to actively participating in network management
functions. In this regard, it is closely related to the anticipatory
mobile networking [2] paradigm associated with the explicit
exploitation of context knowledge for optimizing decision
processes. As pointed out by a recent white paper of the
5G Automotive Association (SGAA) [3] future connected and
autonomous vehicles will massively benefit from predictive
networking concepts such as signal strength estimation and
data rate prediction along future trajectories.

However, the benefits of leveraging the client devices, which
range from mobile phones over resource-constrained embed-
ded computers to ultra low-power microcontrollers, come at
the cost of being subject to a great platform-related resource
heterogeneity that limits the variety of applicable models [4].

In our previous work [5], we presented Deep RAdio channel
modeling from GeOinformatioN (DRaGon) as a novel method
for signal strength estimation using expert knowledge from the
mobile communications domain as well as deep learning-based
data analysis methods. Although DRaGon, which incorporates
detailed geo-information about the receiver environment, has
been demonstrated to outperform existing models and meth-
ods such as ray-tracing, however its complex deep learning
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Fig. 1. Evolving from deep learning channel predictions for high perfor-
mance ML platforms to lightweight ML-based channel predictions for small
embedded platforms with power and computational constraints.
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pipeline inherently limits its range of application.

In this paper, we present TinyDRaGon as a novel variant of
DRaGon that builds upon a more lightweight ML process. Our
defined goal is to achieve real-time availability of the predic-
tion outcomes even for highly resource-constrained platforms.
Fig. 1 illustrates example application devices that benefit from
TinyDRaGon as they do not provide deep learning capabilities.

The remainder of the paper is structured as follows. After
discussing the related work in Sec. II, we present our proposed
TinyDRaGon method in Sec. III. Afterwards, an overview of
the methodological aspects is given in Sec. IV. Finally, a
detailed performance comparison leveraging real-world mea-
surement data is provided in Sec. V.

II. RELATED WORK

The achievable prediction accuracy of high-level Key Per-
formance Indicators (KPIs) such as end-to-end data rate and
latency highly depends on the predictability of low-level
features such as the path loss between sender and receiver
[6]. As path loss estimation is a classical mobile commu-
nications task, a great variety of analytical and empiricial
models has emerged. However, regardless of their popularity
in the network simulation domain [7], these models can be
understood as abstract reference environments that mostly
do not allow to derive precise estimations for concrete real-
world scenarios [8]. Even for ray tracing methods [9] that
build upon in-depth modeling of the physical processes that
determine the signal propagation behavior — and are therefore
computationally expensive — practical applications are mostly
not able to unleash the full potential of this method as ultra-
high-resolution environment data (e..g, shapes and materials
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of the obstacles) for the evaluation scenarios is typically not
available [10], [5].

As a consequence, recent works have tried to find novel
approaches for incorporating environmental data into the path
loss prediction process. A promising solution is the combina-
tion of mobile networking expert knowledge (e.g. radio propa-
gation models) and ML-based data analysis. A comprehensive
summary about major ML disciplines, established models and
their application in wireless communications is given in [11].
ML-enabled path loss prediction is a regression task, whereas a
supervised learning model fyy is trained using a feature matrix
X and a corresponding label vector y such that fy : X — y.
After the training phase, the model can be utilized to derive
predictions § on new data x such that § = fyr(x). Building
upon this methodological approach, different authors such as
Masood et al. [12] as well as Enami et al. [13] have leveraged
geographical features (e.g. Line-of-Sight (LOS) and Non-Line-
of-Sight (NLOS) distance, number of building penetrations)
extracted from environmental data for path loss prediction

Following the assumption that radio propagation effects
will have similarities between “similar-looking” environments,
image-aided path loss estimation methods have emerged dur-
ing the last years. One of the first approaches that relies on
consequent incorporation of aerial images of the receiver envi-
ronment into the ML pipeline, has been presented by Thrane et
al. in [10]. Based on this groundwork, we presented DRaGon
in [5]. DRaGon constructs a three-dimensional environment
model taking into account various data sources (e.g. terrain
profiles, building information, road network topology) that
are utilized to extract top view and side view images of the
receiver environment. Based on these images and additional
numerical features, a deep learning process is utilized to learn
a correction offset to an empirical channel model. Recently,
the potential of deep learning-based image-aided path loss
estimation has been recognized by different authors: While
[14] and [15] implement similar methodologies as DRaGon,
Kuno et al. have achieved a prediction error of 5.3 dB Root
Mean Square Error (RMSE) by combining top view and side
view images [16]. Other authors [17], [18] have investigated
clustering techniques to achieve better generalization over dif-
ferent scenarios. Most recently, the authors of [19] have proven
the general feasibility of this approach even for complex
indoor scenarios.

However, recent investigations have criticized the tendency
of many scientific works to overestimate the performance of
deep learning methods. In their empirical analysis in [20],
Dacrema et al. have analyzed deep learning publications
presented at top-tier ML conferences between 2015 and 2018.
Within their study, the authors were able to outperform the vast
majority of the considered methods using simpler techniques.
Within our own work [21] regarding end-to-end data rate
prediction for vehicle-to-cloud communications, we have also
recognized that simpler ML methods such as Random Forests
(RFs) are often able to achieve comparable or even better per-
formance than deep learning methods. These observations have
motivated us to work on a lightweight variant — TinyDRaGon,
which is the main contribution of this paper — of DRaGon.

Our goal is to achieve a similar accuracy as DRaGon using a
significantly smaller resource footprint.

III. PROPOSED HYBRID MACHINE LEARNING APPROACH

Problem statement: Our goal is to compute the received
signal strength Prx at a specific receiver position prx given
the transmitter position prx. For this purpose, we utilize a
generic model

Prx(Prx; P1x) = Prx — L(prx, Prx) + AL(x) (1)
~  —— —
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that estimates Frx based on an Equivalent Isotropically Ra-
diated Power (EIRP) representation of the communication
system properties Prx, the path loss of an analytical radio
channel model L, and a correction offset AL. We rely on
the 3rd Generation Partnership Project (3GPP) Urban Macro
(UMa) B [22] channel model for determining L. AL is
obtained using the proposed lightweight ML pipeline process-
ing the information provided in the feature vector x, which
will be described later, jointly with the calculated path loss
L. The reduced system architecture model of the proposed
TinyDRaGon method is contrasted with that of the DRaGon
method in Fig. 2.
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Fig. 2. Compact system architecture model of the proposed TinyDRaGon

received power prediction method compared to its predecessors architecture.

Data preprocessing: Since TinyDRaGon is a derivative of
the DRaGon model, the data set generation is based on the
same routines (for further information see [5]). Therefore,
Lightweight ICT-centric Mobility Simulation (LIMoSim) [23]
is utilized as a central data aggregation entity, which allows
the creation of receiver environmental images and numerical
features in a single methodical setup. Based on the scenar-
ios rectangular bounding box, building, and elevation data
are made available to LIMoSim so that a three-dimensional
environment model can be created. For each pair of three-
dimensional receiver and transmitter positions, determined
from real-world measurement data, LIMoSim constructs the
data samples needed for the ML task. There are two kinds
of image samples covered in DRaGon: One that shows the
receivers surrounding area from a top-view perspective and
one that displays the direct paths side view between receiver



and transmitter. Additionally, direct path features obtained in
this process are covered in the resulting feature vector x.

Because the TinyDRaGon specific data preprocessing takes
place in python, as this is state of the art for data processing
and many ML applications, an interface was implemented so
that the LIMoSim based data sample generation is callable
via python. For computational efficiency the data generation
routine returns lists of two-dimensional points, defining the
shapes forming the buildings and the terrain in the DRaGon-
specific image samples. These data points are then transformed
directly into 64 px x 64 px sized PNG images. The image size,
as well as the environment’s covered range of 300 m, has been
optimized in previous publications [10], [5].
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Fig. 3. Extraction of mathematical features from the images of the receiver
environment. Note that h; indicates a horizontal and v; a vertical split.

Due to the fact that the processing of image inputs compared
to feature inputs is exceptionally computationally expensive
and memory-consuming, TinyDRaGon eliminates the images
as such. Instead, numerical features are derived from the image
samples, which are then appended to the existent feature vector
constructed from the LIMoSim scenario. Examples of the
image-based feature extraction process are shown in Fig. 3.
Both image types are split into equally sized Regions of
Interest (Rols) for which the ratio between obstacle pixels and
overall pixels is computed. The top view images, for which the
only obstacles are the buildings, are split into five horizontal
ho,...,hs Rols. For the side view images, which contain
building and terrain profile data, four horizontal hy, ..., hg and
vertical v, ..., v3 splits are performed.

Data analysis: The resulting overall feature vector x is
composed of 34 features from different logical domains:

o Xcom: Carrier frequency f, bandwidth B, transmission

power Prx

e Xgeo: Buclidean distance d, transmitter height hrx, re-

ceiver height hgry, elevation difference Ah, longitudinal
difference Alon, latitudinal difference Alat

e Xeny: Number ny, of building intersections, indoor dis-

tance d;,, number n of terrain intersections and terrain
distance dier

e Ximg: Relation of building pixels in the top view images

for five horizontal splits, relation of building and terrain
pixels in the side view images for four horizontal and
four vertical splits

For the actual ML processes, the LIghweight Machine
learning for IoT Systems (LIMITS) [24] framework is utilized
as a high-level automation interface for Waikato Environment

for Knowledge Analysis (WEKA). We primarily apply RFs
[25]. The latter are ensemble methods that derive a so-called
strong learner by combining different uncorrelated decision
trees. Each tree only considers a subset of the measurements
(bootstrap aggregation) and only a subset of the features
within each node (feature randomness). During the training
process, the trees are constructed with respect to the so-called
impurity that serves as a metric for the homogeneity of the
examples at each node. Compared to DRaGon’s Deep Neural
Network, RFs fall into the realm of Explainable Artificial Intel-
ligence (XAI), so that TinyDRaGon comes up with improved
interpretability of the gained results.

IV. METHODOLOGY

Evaluation scenarios: For the evaluation of TinyDRaGon
we utilize real world measurements from different data
sources, which were previously preprocessed and freed from
outliers:

¢ Vehicular measurements from the german city of Dort-
mund in campus, urban, suburban, and highway environ-
ments (56182 samples) [8]

o Vehicular measurements from the german city of Wupper-
tal in urban and suburban environments (30708 samples)
(21]

o Vehicular measurements from the danish city of Copen-
hagen in a campus environment (55832 samples) [26]

e Unmanned Aerial Vehicle (UAV) measurements with
receiver heights up to 100m from the danish city of
Aarhus (232492 samples) [27]

Validation methods: In order to validate the TinyDRaGon
model, it is later compared to multiple path loss prediction
models from various categories:

o Conventional channel models such as Friis, Nakagami
(m = 2), and Two-Ray Ground

o Empirical channel models such as 3GPP UMa B [22] and
WINNER II C2 NLOS

o Environment-aware channel models with Obstacle shad-
owing [28] and Altair WinProp ray tracing

e Machine learning-based channel modeling with DRaGon

Hyperparameters: Since RFs do not tend to overfit, tun-
ing the hyperparameters is less important compared to deep
learning models, where the model’s performance is influenced
heavily by its hyperparameters. The most influential parame-
ters on the models’ accuracy are the number of decision trees
as well as the maximum depth per tree. Typically increasing
both the number and depth improves the models’ performance
and should be chosen on what is mathematically feasible.
To this end, we analyzed numbers of trees ranging from 1
to 100 by using maximum tree depth and applying k-fold
cross-validation to the aggregated data set across all evaluation
scenarios holding 337684 samples with 34 features each. The
prediction error initially decreases considerably as the number
of trees increases and tends to stay at the same prediction
error for more than 80 trees. We use 100 decision trees
and maximum tree depth in the following, as this is still
computationally feasible and further increasing the number of
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Fig. 4. Comparison of the absolute received power prediction errors of

different methods evaluated on the Dortmund data set.

trees will lead to minor improvements in the prediction error
but an increase in computation time during training.

V. RESULTS

Performance comparison and validation: As a perfor-
mance comparison, the Empirical Cumulative Distribution
Function (ECDF) of the absolute prediction error of the pro-
posed TinyDRaGon model and the reference channel models,
listed in Sec. IV, applied in the Dortmund scenario is shown
in Fig. 4. For the training procedure of TinyDRaGon as well
as DRaGon, the aggregated data set across all evaluation
scenarios is split into 90 % training data and 10 % test data.
Then, both ML models are evaluated on the previously unseen
portion of the test set that belongs to the Dortmund scenario.

It can be seen that the plot is separated into three cate-
gories established by the single models’ performance. The
first category, which yields the best results, holds the two
ML-based prediction models. The proposed TinyDRaGon
method achieved an RMSE of 2.27dB, while its predeces-
sor DRaGon achieved 2.79 dB RMSE prediction error. Even
though TinyDRaGon is a comparatively simple ML model,
it is capable to gain even better prediction results than its
deep learning predecessor. The second category consists of
the empirical methods and the ray tracer. The ray tracer
achieved an RMSE of 9.24 dB, while the empirical methods
achieve a slightly worse performance with 9.25 dB and 9.53 dB
RMSE respectively. The reasons behind the ray tracer’s similar
performance to the empirical models are discussed in [5]. The
third and last category is the one performing worst, including
the Friis-based models. The models achieve a significantly
lower prediction accuracy with RMSE values worse than
29.59dB that highly limit their practical applicability.

As the lightweight numerical feature only TinyDRaGon
gained better prediction results than the deep learning-based
DRaGon method incorporating image inputs, we also examine
other simple ML methods. For that purpose, we use the
same data to train simple regression models, namely an M5
regression tree, a Support Vector Machine, and a simple
Artificial Neural Network. The results can be observed in
Fig. 5, where the prediction accuracy is depicted as ECDF of
the absolute prediction error on the received power. Although
all examined regressors outperform the empirical reference
model, the evaluation revealed that the formerly investigated
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Fig. 5. Comparison of the absolute received power errors of different ML
methods evaluated on the Dortmund data set.

RF yields the best results, while other simple regressors
achieved worse prediction accuracy than DRaGon.

Relative feature importance: In order to gain insight into
the relative impact of the different features, we consider the
normalized Mean Decrease Impurity (MDI) [29] in Fig. 6. We
remark that MDI interpretation is non-trivial since its relevance
within the model construction process does not necessarily
equal the interplay of the physical effects in the real-world.

As it can be observed the feature importance differs for
the distinct scenarios. Especially, a significant difference can
be seen between the vehicular and the UAV data sets. The
features extracted from the side view images are ranked as
the most important feature class for the vehicular data sets.
There, the features with the highest feature importance are the
proportion of building and terrain pixels in the top horizontal
split, while the features with the lowest feature importance
are the ones in the bottom horizontal split. This indicates that
tall buildings have a major influence on the received power
in these scenarios. The second important feature class for
the Dortmund and Copenhagen data sets is Xgeo, Where the
most important feature in the Dortmund data set is the cell
height, while the most important feature in the Copenhagen
data set is the elevation difference. This reveals the structural
difference within the different data sets, as some features under
investigation have a broader value range in some scenarios
than others. In contrast, for the UAV data collected in Aarhus
the most impactful feature class is the one holding the ge-
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feature domains for the different data sets.



ographical features. Upon closer analysis, it was evident that
the receivers’ height has the most influence here. In the global
model, where all evaluation scenarios are employed, the X,
has the most influence, but with a high standard deviation
caused by the huge impact of the receiver’s height. The second
important feature class is Xg4e, While the other categories have
low feature importance with minimum standard deviation.
Generalization In order to analyze TinyDRaGons gener-
alizability over different scenarios, multiple data aggregation
approaches are compared. In the scenario-wise approach, an
individual split evaluation for each scenario is done. In the
global approach, the model is trained using 90 % of the
aggregated data set. And in the cross-scenario approach, for
each subset, the model is trained on the remaining aggregated
data, while the subset under investigation is used as the test
set for evaluation. The results of this analysis are presented
in Fig. 7. It can be seen that the scenario-wise and global
methods achieve similar performance with a mean of zero
for all evaluation scenarios and 2.28 dB to 3.20dB RMSE.
For the Dortmund, Copenhagen, and Aarhus data sets the
global method achieves slightly better RMSE values than
the scenario-wise method. In contrast, the DRaGon model
performed better when trained scenario-wise. The most chal-
lenging method is the cross-scenario evaluation as it reveals
the dissimilarities between the training data sets. Both german
scenarios contain measurements from similar environment
types thus the test scenario is covered reasonably well in the
training data. As a result, TinyDRaGon performs best on the
Dortmund and Wuppertal data in the cross-scenario approach
with RMSE values of 6.55dB and 7.22dB respectively. The
Aarhus data set solely holds UAV measurements at receiver
heights up to 100m, which have a significant impact on
the LOS probability. As figured out by analyzing the global
model’s feature importance, the most influencing feature is the
receiver’s height. As the model in the cross Aarhus scenario is
exclusively trained on ground-based vehicular measurements,
the receiver’s height was fixed to 1.5 m. Hence, the model was
not capable of learning this aspect and as a result, the model
achieves bad prediction accuracies while predicting the UAV
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TinyDRaGon using different data aggregation approaches.

samples and underestimates the received power. Nevertheless,
the results of the global method display that it is attainable to
utilize one model for ground-based as well as aerial scenarios
and that increasing the locality of the model does not lead to
more accurate predictions.

These results are also compared with the results of the
DRaGon model. The latter provides the most accurate predic-
tion when trained as locally as possible - accordingly using
the scenario-wise approach - and thus performs slightly worse
with the global method than TinyDRaGon. For the cross-
scenario approach, TinyDRaGon achieves significantly better
predictions than DRaGon on the vehicular data sets. Moreover,
compared to DRaGon, TinyDRaGon outperforms the empirical
models regarding the vehicular data sets, but performs worse
than DRaGon and slightly worse than the empirical models
on the Aarhus data set using the cross-scenario approach.
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Fig. 8. Performance comparison of the computational efficiency of
TinyDRaGon, DRaGon, and ray tracing.

Computational efficiency: So far TinyDRaGons perfor-
mance has been solely analyzed in terms of its prediction
accuracy. However, other aspects should be considered when
choosing a channel model, such as computational complexity,
time efficiency, energy consumption, and memory require-
ments. To analyze these factors in more detail, a 1.2km x
1.2 km-sized test scenario in the Dortmund urban scenario
is defined. Within this scenario, 9162 receiver positions are
examined for one transmitter configuration. The predictions
of the received power are investigated using the same device
for TinyDRaGon, DRaGon, and the ray-tracing software. As
the ML-based models need to be trained in advance, Fig. 8 a)
gives an overview of their training duration utilizing the aggre-
gated data set. While DRaGon uses GPU-accelerated training
operating on an NVIDIA A100-PCIE-40GB, TinyDRaGons
training is CPU-based and performed without parallelization.
Regardless, training TinyDRaGon is roughly 10x faster than
training DRaGon. Further, storing DRaGons data samples
requires 10X more memory. Fig. 8 b) shows the time re-
quired for the predictions made by the channel models under
investigation. For the environment-aware models, this encloses
downloading and preprocessing the environmental data as well
as the sample generation needed for the ML models. While
TinyDRaGon and DRaGon require nearly the same amount
of time of about 43s, the ray tracer takes 2.5x as long. In
contrast, empirical models compute all 9162 predictions in
less than one second but require comprehensive measurement
campaigns in advance.

Energy efficiency: Due to DRaGons model complexity and



the resulting long-lasting and GPU-accelerated training, its
application is much more energy consuming, than utilizing the
lightweight TinyDRaGon method. While training the DRaGon
model, the computing machine consumed more than 67x the
energy that is required for training the TinyDRaGon model.

VI. CONCLUSION

In this paper, we presented TinyDRaGon— the lightweight
successor of our previous signal strength prediction method
DRaGon. While the achieved prediction accuracy of the two
methods is very similar, TinyDRaGon provides multiple ad-
vantages: It allows faster training and inference, a less complex
training process due to a lower amount of hyperparameters,
and an interpretable decision-making process. This makes it
suitable to be applied in embedded systems with power and
computation constraints, where its deep learning predecessor is
unsuitable due to its hardware requirements especially when it
comes to online learning. In future works, we plan to increase
TinyDRaGons generalizability and leverage it in the context
of network planning. Further, we want to focus on an indoor
version of TinyDRaGon.
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