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Abstract—Increasing automation of industry verticals and
frequently changing production cycles require a high level of
production line modularity and are locally accompanied by
frequently changing disjunctive application requirements. Thus,
current and future wireless communication networks need to face
the challenge of providing opportunities to rapidly adapt the net-
work to its changing application demands in order to guarantee
a resilient and interference-free communication. A possible key
technology for implementing such a solution is represented by
private 5G networks that are additionally equipped with network
slicing in order to be able to meet the versatile requirements
of novel applications. However, resilient network design as well
as network slice dimensioning can only be guaranteed through
detailed network planning. This requires expert knowledge,
which is not yet present at most companies or institutions.
Accordingly, automation of the network planning process is a
possible solution. Existing coverage planning frameworks are
extended by capacity planning in this work, and network slicing
is introduced. It is shown on the basis of a realistic scenario
that the predictability of data (e.g., traffic characteristics in low-
latency slices) significantly influences capacity planning and must
be taken into account in the dimensioning of 5G and beyond
future mobile networks.

I. INTRODUCTION

With the introduction of spectrum usage permits in various
countries such as the USA, Germany, and others, there is
increasing interest in private mobile networks based on 5G and
beyond. Private 5G, especially in combination with network
slicing, is seen as a key technology for industrial users who are
increasingly focusing on digitization and automation of their
processes [1], with first measurement studies evaluating the
performance of this approach [2]. However, to ensure the safe
operation of such private 5G networks, network planning is re-
quired. When applying for frequency use, the private operator
of the network must ensure that interference with neighboring
cells is mitigated by complying with specified limits (e.g.,
received power) at the cell edges. However, it cannot be
assumed that the required expert knowledge about network
planning exists at applicant companies or institutions. Thus, it
makes sense to automate the entire network planning process.
The authors have already developed an automated framework
based on unsupervised learning in the context of coverage
planning [3]. In this paper, an extension of this framework
to capacity planning is presented, which also integrates new
aspects of network planning that will be important in 5G and
beyond. Different facets of this are detailed in the next section.

A. The Problem of Data Uncertainty and Safety Margins
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Fig. 1. Data uncertainty versus safety margins (or overprovisioning) of
communication network resources [4].

To understand why novel capacity planning methods are
needed for the dimensioning of future networks, Fig. 1 shows
the relationship between data uncertainty and safety margins.
The trend of deployment costs is shown above, with different
network, participant, or application parameters varying sig-
nificantly, depending on specific traffic characteristics. These
parameters can be divided up into packet Inter-Arrival Times
(IATs), data amounts, and user locations. For instance, in
order to maintain zero scheduling latency in critical Ultra-
Reliable Low Latency Communications (uRLLC) slices, the
IATs and data amounts of the network slice participants have
to be predicted to avoid lengthy scheduling request and grant
mechanisms. This means that the cost of deployment, e.g.,
amount of base stations to deployed, rises with the uncertainty
of data. For example, periodic packets with a fixed data amount
are easily predictable, even without Machine Learning (ML),
whereas stochastic processes are harder to predict perfectly.
The most extreme case of uncertainty arises with random, rare
events, where it is nearly impossible to make a forecast for
the network scheduler. With rising uncertainty, the network
operator has to provide safety margins, or overprovisioning,
in order to mitigate prediction errors, which in turn raises
the costs of deployment. Also, the location of the users
determine the signal quality, varying the resources needed for
upcoming data transfers. Different trade-off strategies can be
considered in order to balance out these relationships, e.g.,
static assignment of resources, where unused resources are
wasted, or by deploying more base stations to increase the
average signal quality.
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Fig. 2. Extension of traditional network planning to meet the challenges of
5G and beyond networks.

This means that traditional network planning aspects have
to be extended in order to integrate these new aspects. In
Fig. 2 left, the aspects of traditional network planning are
depicted, which are coverage and capacity planning. The
details of coverage planning and methods for its automation
were presented by the authors in a previous work [3]. As for
capacity planning (cf. Fig. 2 right), new or important aspects
are emerging especially for 5G and beyond communication
networks. The main aspects are, among others, the importance
of network configuration [5] as well as network slicing for
the safe operation of certain application and service types,
especially for industrial verticals [6]. Typically, three main
service types are identified for network slicing [7]: uRLLC
for very low latency and high reliability (e.g., remote control
of vehicles or robots), Enhanced Mobile Broadband (eMBB)
for very high throughput and high spectrum efficiency (e.g.,
video / live event streaming), and Massive Machine Type
Communications (mMTC) focusing on very high connection
density and network energy efficiency (e.g., smart city). In
this work, the balance between uRLLC and eMBB slices is
analyzed in the context described in the introduction. The
important aspect here is the coexistence trade-off between
these two service types which depends on data predictability.

B. Importance of Data Predictability for Capacity Planning
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Fig. 3. The effects of prediction quality (predictability), scheduling mecha-
nisms, and overprovisioning on uRLLC latency and eMBB throughput [6].

In Fig. 2 right, the main differences between eMBB and
uRLLC slices are described. Regarding the scheduling of data
packets, eMBB slices can safely be scheduled traditionally

with reactive and latency-inducing scheduling request and
grant mechanisms, as the main goal is to maximize the data
throughput and scheduling latency can be tolerated. On the
contrary, the uRLLC slice data traffic requires very low latency
and thus, the elimination of any possible components of the
end-to-end latency. In [6] the authors showed that the schedul-
ing latency of uRLLC slices can be eliminated by predicting
the packet IATs and data amounts of its User Equipments
(UEs). However, the prediction quality is highly dependent on
the predictability or uncertainty of the data and the limitations
of utilized ML models. Fig. 3 illustrates this relationship
by depicting various situations, where data predictability is
varied. The three situations show a scheduling grid in the
uplink comprising the time (x-axis) and the frequency (y-
axis) domains. For illustrative purposes, three Resource Blocks
(RBs) per Transmission Time Interval (TTI) can be scheduled,
which are distributed by the scheduler to the uRLLC or eMBB
slice. The TTI is 1ms or lower, depending on the Subcarrier
Spacing (SCS) [7]. Above, the required uRLLC resources are
depicted, e.g., 1 meaning that a single RB is sufficient. On
the left side of Fig. 3, the first situation is shown where all
the required resources for the uRLLC slice can be scheduled
since the ML-based scheduler was able to perfectly predict the
packet IATs and the required RB. Thus, there is no scheduling
latency in this case, since the packets can be sent immediately
by the UEs as soon as they are queued in their own buffers. In
addition, the maximum possible throughput can be achieved in
the eMBB slice, since the uRLLC slice (with higher priority)
only uses as many resources as required and thus the remaining
capacity can be used for the throughput of the eMBB slice.
In Fig. 2 middle, the number of RB required for the uRLLC
slice increases in the first TTI. However, since the prediction
fails due to poor predictability, only one RB is granted in
advance even though two were needed. Thus, the packet must
be held back at least one TTI (in most cases much more) in
the UE’s buffer to be sent in the next TTI, or even later after
a lengthy scheduling request and grant sequence. Depending
on the SCS and thus the Scheduling Request (SR) periodicity,
the resulting latency is >1ms [7], which is not optimal for
low-latency slices. However, by not wasting any resources,
the maximum throughput in the eMBB slice is preserved. In
Fig. 3 on the right is the same initial situation as above, but
here an overprovisioning is configured. Since this is a 100%
overprovisioning, twice as many resources are reserved for
the uRLLC slice as they should have been according to the
prediction. Thus, incorrect predictions can be intercepted, as
is done in this case, to keep the scheduling latency in the
uRLLC slice at 0ms. However, it is obvious that in the case
of a correct prediction the previously allocated resources are
wasted by overprovisioning, and thus cannot be used in the
eMBB slice. Thus, the actual maximum throughput can no
longer be utilized, reducing the spectral efficiency.

The described relationship leads to the fact that in capacity
planning, the uncertainty of data in low-latency slices must
be taken into account. In this work, this is investigated in the
following sections based on a realistic scenario.
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Fig. 4. Architecture overview of the developed coverage and capacity planning framework including network slicing planning and overprovisioning.

II. RELATED WORK

Related Work regarding automated network planning and
configuration is detailed in [3] and [5]. However, further work
has been done in this field of research since then. In [8]
and [9], the authors utilized unsupervised ML and clustering-
based network planning, further confirming the viability of this
method for this purpose. However, our work extends these
ideas by allowing the usage of complex ray-tracing simula-
tions instead of pure analytically calculated data basis and
the integration of automated network slicing-based capacity
planning. Regarding automated capacity planning, the authors
in [10] present a suiting method for multi-tenant small cells.
In our work, we aim to further extend these approaches with
the novel aspects of network slicing as well as uRLLC and
data predictability.

III. METHODS

In this section, the overall architecture of the coverage and
capacity planning framework will be described on the basis of
Fig. 4. The figure is divided into four sections reflecting the
chronological sequence and phases of network planning, from
left to right User Inputs, Target Signal Quality Calculation,
Data Rate Calculations, and finally Coverage Planning.

In the first section (User Inputs) on the left the parameters
are listed, which have to the entered by the user of the frame-
work. Firstly, the polygon of the private network is defined
and serves as input of the coverage planning framework (cf.
[3]), which downloads the necessary environment data from
open sources and generates the Radio Environmental Maps
(REMs) and performs the coverage planning based on it.
However, in order to perform this coverage planning, a target
value of the required received power (in dBm) is necessary,
which was defined manually until now. This work aims to
calculate the required receive power based on the network

configuration as well as the target data rate (in Mbps). The
network configuration consists of all different parameters,
which directly influence the resulting data rate or throughput
of the UEs, e.g., bandwidth, frequency, Time Division Duplex
(TDD) pattern and many more (cf. Fig. 4 and Table I). As
for the target data rate in Mbps, the slicing configuration is
considered. This is defined as follows:

Target Data Rate (Mbps) =

DReMBB + (DRuRLLC ∗ (1 + γOP)) (1)

where γOP describes the overprovisioning factor, and
DRuRLLC and DReMBB define the peak resource allocation at
any given time by the uRLLC and eMBB slice, respectively.

The next section (Target Signal Quality Calculation) de-
scribes the process of calculating a target signal quality
by estimating possible Signal-to-Interference-plus-Noise-Ratio
(SINR) values. The SINR calculation is conducted as follows:

SINRdB = SNRdB = PS,dBm − PN,dBm (2)

where PS is the received signal power, and PN is the noise
level, both with the unit dBm.

The following assumptions are made:
• As this work is in the domain of private 5G networks,

the interfering signal level PI is neglected, because
neighboring private 5G networks are rare. Additionally,
the regulations make sure that interference is kept low.

• All gains are assumed to be 0 dB, as all powers are de-
clared as Equivalent Isotropically Radiated Power (EIRP).

The noise level PN is represented by the thermal noise PT at
the receiver, which is calculated as follows:

PN,dBm = PT,dBm = −174 + 10 ∗ log10(B) (3)



where B is the bandwidth in MHz.
As for PS , all possible received power levels are considered

in order to find the matching value for the target data rate. To
do this, resulting data rates must be calculated from the SINRs.

This is conducted in the next phase Data Rate Calculations.
For this, a corresponding Channel Quality Indicator (CQI) has
to be derived from the SINR, for which no direct method exists
in the 5G standard [7]. Consequently, existing work in the area
of SINR to CQI conversion is referenced. In [11], the authors
derive such tables for 64QAM and 256QAM modulation in
the downlink. The goal is to use the best CQI possible, while
maintaining a maximum transport block error probability or
Block Error Rate (BLER) of 0.1 (or 0.0001 for low spectral
efficiency tables). Derived from this, these tables are utilized
based on the following assumptions:

• The same CQI used in the downlink is also used
for the uplink, as CQI tables 1-3 in the 5G standard
[12] are shared between Physical Uplink Shared Chan-
nel (PUSCH) and Physical Downlink Shared Channel
(PDSCH) [7].

• For both downlink and uplink, the 256QAM table is used,
which enables the maximum throughput possible.

• The ”Practical channel estimation” is preferred over
”Perfect channel estimation”, as it better represents real
conditions.

After all possible SINR values are mapped to a correspond-
ing CQI value, a list of possible code rates and modulation
orders can be derived. This means that all required parameters
are now present in order to calculate the resulting throughput
for each received signal strength. The throughput or the max.
data rate formula (same for both uplink and downlink) is given
in the 5G standard as follows [7] [13]:

Data rate (Mbps) = 10−6 ∗
J∑

j=1

[
v
(j)
layers ∗Q(j)

m ∗ f (j) ∗Rmax

∗ 12 ∗NBW(j),µ
PRB

Tµ
s

∗ (1− OH(j))
]

(4)

A detailed description of the expressions can be found in
[7] and [13].

For TDD, Eq. 4 has to be multiplied by a factor τ (Direction)
TDD

for each uplink or downlink direction to include TDD pattern:

τ (Direction)
TDD =

1

14
∗N (Direction)

TDD (5)

where N (Direction)
TDD is the number of slots used for either

direction (F slots included).
The throughput calculations result in received power level

and throughput tuples. Based on the target data rate, a received
power in dBm can be derived, which fulfills the requirement.
On this basis, the coverage planning described in [3] is then
performed. After that, the resulting data rates of the REMs are
then calculated based on the same methods described above,
as the utilized ray-tracing tool outputs received power levels.

In the next section, this method is further evaluated based
on scenarios combined from [3] and [6].

TABLE I
CONFIGURATION PARAMETERS FOR THE NETWORK PLANNING, RAY

TRACING, AND NETWORK SLICING DOMAINS

General Network Configuration
Communication Direction Uplink

Center Frequency F = 3.75GHz (FR1)
Bandwidth BW = [20, 50, 80, 100] MHz

TDD Uplink Slots N (Uplink)
TDD = [4, 5, 6, 7, 8, 9, 10]

Subcarrier Spacing µ = 1 (30 kHz)
Aggregated Carriers J = 1

MIMO Layers vlayers = 2
Communication Overhead FR1Uplink = 0.08 [13]

Scaling Factor f = 1 [13]
CQI Table Table 2 (256QAM) [7, Tab. 294]

SNR-CQI Table 256QAM [11, Tab. 2]

Network Planning and Ray Tracing Configuration (cf. [3])
Overprovisioning Factors γOP = [0, 0.2, ..., 1, 1.2, ..., 2]

Antenna EIRP PA = [15, 18, ..., 39, 42] dBm
Antenna Radiation Patterns Omnidirectional, Sector (120◦)

Simulation Model Standard Ray Tracing Model
Prediction Height 1.5m

Max. Allowed Edge Power −80dBm

Network Slicing Configuration (cf. [6])
Slice User Amount Peak Resource Allocation [6]

uRLLC 50 DRuRLLC = (1 + γOP) ∗ 100Mbps
eMBB 40 DReMBB = 400Mbps

IV. EVALUATION

In this section, the evaluation of the developed method
of our network slicing-based coverage planning is presented
based on a realistic scenario, which combines the properties
of the scenarios in [3] and [6].

A. Evaluation Scenario and Configuration Parameters

In Fig. 5, the evaluation scenario is illustrated as a map
generated by the network planning framework.

Possible base station positions
Monaco

Fig. 5. Evaluation scenario based on a densely built-up area in Monaco. The
stars represent possible base station locations.

There, a realistic evaluation scenario is shown, which was
also utilized in [3] and is represented by a densely built-up area
in Monaco. The teal area represents the private 5G network
to be covered at the target data rate, where the received
power must not exceed a certain value outside the area. All
possible base station locations are represented by the teal stars,
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Fig. 6. Evaluation results of the coverage and capacity planning framework. Flawed prediction and thus high overprovisioning leads up to 3 additional base
stations to be installed to keep zero latency in uRLLC slice, while strongly impairing the eMBB throughput due to overprovisioning.

which are mainly composed of positions on top of buildings
with a minimal height and area. All configuration parameters
for the procedure described in Sec. III are listed in Tab. I.
Three different parameters are varied in order to analyze the
influence of data predictability and thus overprovisioning on
the network planning: bandwidth, TDD uplink slots, and most
importantly the overprovisioning factor. The latter represents
the parameter that reflects the predictability of the data,
since poor predictability requires higher overprovisioning of
the uRLLC slice. Planning is carried out for peak traffic
(worst case scenario), whereby the network subscribers can
be distributed anywhere on the area, i.e., also at the cell edge.

The results are shown and analyzed in the next section.

B. Evaluation Results and Analysis

In Fig. 6, all evaluation results are shown. The figure shows
9 different subplots for each Overprovisioning (OP) factor,
starting on the top left with γOP = 0 (perfect prediction, no
OP) and ending on the bottom right with γOP = 2 (strongly
flawed prediction, tripled channel utilization). The subplots
show the number of configured TDD uplink slots on the x

axis, while depicting the chosen bandwidth (MHz) on the
y axis. The color of the blocks plotted on the subplot each
represent the number of base stations (or gNodeB) needed for
90% mean uRLLC fulfillment. Fulfillment here means that
the required number of resources (including OP) is available
at the respective location. This is then provided in 90% of
the teal area shown in Fig. 5. The blank spaces indicate that
> 90% coverage is not possible with the given configuration.

On the top left, where perfect prediction is assumed and no
OP has to be configured, the required number of base stations
is relatively low with 1 to 5 depending on the bandwidth and
number of TDD uplink slots. The trend is, as expected, that
the total of required base stations decreases with the increase
of the bandwidth as well as the uplink slots. Note that ML-
based automated network planning was performed and due to
statistical fluctuations, the required base stations can increase
slightly even when expanding bandwidth or TDD uplink slots.

The subplots further to the right show cases in which
the uRLLC slice traffic characteristics become less and less
predictable and thus the OP factor γOP must be increased.
It can be observed that with decreasing predictability, the



average number of base stations required for the respective
configurations also increases. The subplots further show which
trade-offs between bandwidth, TDD configuration and slice
predictability can be weighed against each other and selected
by network operators.

This trend resumes in the second and third rows (beginning
with the lower γOP on the left). The most interesting insight is
revealed when analyzing the last subplot at the bottom right,
which shows case γOP = 2. It shows the situation in that the
traffic predictability is so low that the triple channel utilization
is configured for the uRLLC slice and thus there is almost a
static provisioning of RBs. In particular, the configuration 6
uplink slots and 100MHz bandwidth is interesting: if only 4
base stations were needed with perfect predicability, now 7
base stations are needed with this OP factor to provide the
same quality of service for the uRLLC slice (i.e., maintaining
zero scheduling latency). This is compounded by the fact that
this severely compromises the throughput of the eMBB slice,
as unused uRLLC resources are wasted (cf. Sec. I-B).

Uplink slots appear to be a good mitigation for data 
uncertainty. However, the TDD configuration must be 
synchronized to neighboring cells to avoid interference.

Fig. 7. Number of required base stations over the OP factor for 100MHz
comparing 6, 8, and 10 TDD uplink slots.

In Fig 7, a detailed comparison of 100MHz bandwidth
as well as 6, 8, and 10 uplink slots are given for all OP
factors. It can be seen that a considerable trade-off exists
between the number of TDD uplink slots and the number of
required base stations. Moreover, for 6 uplink slots it becomes
especially visible that overprovisioning (or data predictability)
has a clear impact on the number of base stations required.
However, the number of TDD slots often cannot be freely
chosen, since they have to be aligned with the neighboring
cells. Accordingly, increasing the number of base stations is
the only free parameter that can be influenced by the network
operator, but this is associated with higher costs.

V. CONCLUSION AND OUTLOOK

In this work, we presented a automated framework for
network slicing-based network planning, which extended our
previous work regarding rapid ML-based coverage planning.
The capacity planning framework includes all configuration
parameters given by the 5G standard as well as additional
factors like TDD slot configurations. We showed that not only
different parameters like bandwidth and slot configurations
influence the network planning results and interesting trade-
offs can be considered, but also the data uncertainty of uRLLC

slices. Overprovisioning is required, when data can not be
predicted well, e.g., when data is too random or scarce. This,
in effect, wastes resources and limits the spectral efficiency
and the throughput of other slices, e.g., eMBB applications.
So, in summary, network operators need to consider data
predictability in network slicing-based capacity planning, and
this affects the physical layout and number of base stations,
and thus also greatly increases the cost to meet requirements.

As for future work, more scenarios and influences of other
network configuration parameters like Subcarrier Spacing
(SCS) and carrier aggregation can be considered. Additionally,
the system can be validated using real-life measurements or
simulation frameworks like ns-3.
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