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Abstract—Swarms of collaborating Unmanned Aerial Vehicles
(UAVs) that utilize ad-hoc networking technologies for coordinat-
ing their actions offer the potential to catalyze emerging research
fields such as autonomous exploration of disaster areas, demand-
driven network provisioning, and near field packet delivery in In-
telligent Transportation Systems (ITSs). As these mobile robotic
networks are characterized by high grades of relative mobility,
existing routing protocols often fail to adopt their decision making
to the implied network topology dynamics. For addressing these
challenges, we present Predictive Ad-hoc Routing fueled by
Reinforcement learning and Trajectory knowledge (PARRoT) as
a novel machine learning-enabled routing protocol which exploits
mobility control information for integrating knowledge about the
future motion of the mobile agents into the routing process. The
performance of the proposed routing approach is evaluated using
comprehensive network simulation. In comparison to established
routing protocols, PARRoT achieves a massively higher robust-
ness and a significantly lower end-to-end latency.
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I. INTRODUCTION

Collaborating autonomous drones that coordinate their ac-
tions using Flying Ad-hoc Networks (FANETs) offer the
potential to efficiently perform important disaster relief tasks
— e.g., remote sensing and network provisioning — without
risking the lives of human helpers [1]. A closely related
emerging research field is the integration of small-scale UAVs
into future ITSs [2] for applications such as aerial traffic
monitoring [3] and UAV-aided near field delivery [4]. While
the latter concept has been initially proposed for reducing
the delivery time in inner cities, its inherent avoidance of
direct human-to-human interaction also makes it a promising
candidate for increasing the delivery safety during the COVID-
19 pandemic [5]. An illustration about different applications
of UAV-based FANETs is shown in Fig. 1. For enabling
these novel use-cases, the provision of efficient and reliable
means of communication even in challenging environments is
an important prerequisite. However, established Mobile Ad-
hoc Network (MANET) routing protocols can often barely
cope with the small channel coherence time and the network
topology dynamic implied by the high grade of relative mo-
bility. Anticipatory mobile networking [6] has been proposed
for explicitly addressing the interdependency of mobility and
communication by integrating context knowledge into the
corresponding decision processes. This novel communications
paradigm has a strong relationship to the usage of machine
learning for optimizing wireless communication networks [7]
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Fig. 1. Example applications of UAV-enabled wireless mesh networks.

which manifests in the trend of replacing complex mathemat-
ical models by learned representations of the corresponding
phenomena [8]. Moreover, it has catalyzed the emergence
of novel performance evaluation methods that are capable
of replacing computationally expensive entity-based modeling
with machine learning-based end-to-end models [9]. In this
paper, we present PARRoT as a novel reinforcement learning-
enabled cross-layer routing protocol which leverages appli-
cation layer knowledge from the mobility control routines
for proactively optimizing the robustness of vehicular routing
paths. The remainder of the paper is structured as follows.
After discussing the related work in Sec. II, the novel PARRoT
protocol is presented in Sec. III. Afterwards, an overview about
the methodological aspects of the simulative performance
evaluation is given in Sec. IV. Finally, detailed simulation
results are provided and discussed in Sec. V.

II. RELATED WORK

A wide range of solution approaches for specific appli-
cations and different kinds of vehicular networks has been
proposed by literature. Comprehensive summaries about ex-
isting protocols for highly mobile networks are presented by
the authors of [10] and [11]. Moreover, Cavalcanti et al. [12]
provide an empirical analysis of the popularity of existing
routing protocols and performance evaluation methods in the
context of vehicular networking. Classically, MANET routing
protocols have been classified into reactive — e.g., Ad-hoc
On-demand Distance Vector (AODV) and Dynamic MANET
On Demand Routing Protocol (DYMO) — and proactive —
e.g., Destination-Sequenced Distance Vector (DSDV), Op-
timized Link State Routing (OLSR), and Better Approach
To Mobile Ad-hoc Networking (B.A.T.M.A.N.) — methods.
However, the need to pay attention to the interdependency
between mobility and communication has lead to the rise of
geo-based routing approaches such as Greedy Perimeter State-
less Routing in Wireless Networks (GPSR) which integrate
position and velocity information into their decision making.
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Fig. 2. Overall system architecture model of the PARRoT routing protocol.

In extension, geo-predictive approaches such as B.A.T.Mobile
consider the anticipated future relative mobility of the vehicles
within the routing process [13]. Similarly, Song et al. [14]
present an extended variant of OLSR which uses Kalman filter-
based mobility prediction for optimizing the Multipoint Relay
(MPR) determination process.

Reinforcement learning can be regarded as a step towards
zero touch optimization of wireless communication systems.
Hereby, an agent learns to autonomously perform favorable
actions in a defined environment through observation of the
rewards of previously taken actions. Machine learning-enabled
routing methods have been proposed by different researchers.
The authors of [15] utilize an Artificial Neural Network
(ANN)-enabled centralized routing approach using Software-
defined Networking (SDN) for Vehicular Ad-hoc Networks
(VANETs) delay minimization. Similar to our work, their
proposed routing method Centralized Routing Scheme with
Mobility Prediction (CRS-MP) takes into account mobility
predictions of the mobile vehicles. Oddi et al. [16] use geo-
based routing metrics jointly with Q-Learning-enabled rein-
forcement learning. Similar to B.A.T.Mobile, and as further
discussed in Sec. III, this method represents important ground-
work for the novel PARRoT protocol. Due to the availability
of data analysis tools such as LIghtweight Machine learning
for IoT Systems (LIMITS) [17] which allow to automatically
derive C++ implementations of trained prediction models, it
can be expected that pervasive machine learning will be one
of the key enablers for future network generation.

Another ongoing development is the partial convergence
of cellular and ad-hoc networking paradigms, illustrated by a
growing interest in integrating single- and multi-hop device-to-
device communication into cellular networks and manifested
by concepts such as Multi-hop Cellular Networks (MCNs)
[18]. As a consequence, novel developments in the ad-hoc
networking domain might also have an impact on future
cellular network generations [8].

III. MACHINE LEARNING-ENABLED WIRELESS MESH
ROUTING WITH PARROT

The overall system architecture model of the proposed
PARRoT is shown in Fig. 2. PARRoT consists of three logical
core components which are further explained in the following
paragraphs.

A. PARRoT Wings - Cross-Layer Mobility Prediction

PARRoT utilizes a cross-layer approach that leverages
knowledge from the mobility control domain for anticipating
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Fig. 3. Structure of the chirp data packet with a total size of 40 Byte.

the relative mobility between the different agents for a defined
prediction horizon τ . For this purpose, each agent estimates
its own future position p̃(t+ τ) based on the current position
p(t). The result is then propagated to the other nodes of the
network via the chirp distribution process (see Sec. III-B).
If the PARRoT agent owns information about the planned
trajectory as a sequence of k waypoints, an iterative prediction
method consisting of N = bτ/∆tc steps is applied whereas
∆t represents the mobility update interval and the final result
is given by p̃(t + τ) = p̃N . In each iteration i, the agent
virtually moves towards the current waypoint wk as

p̃i+1 = p̃i +
wk − p̃i
||wk − p̃i||

· v ·∆t (1)

with p̃0 = p(t) and v being the current velocity. After each
iteration, it is checked if the vehicle is now within the radius
rw of the waypoint sphere: If ||wk − p̃i+1|| ≤ rw is fulfilled,
the waypoint is considered reached and k is incremented.

As a fallback mechanism for cases where no waypoint
information is available, the average slope of the previous h
positions is computed and extrapolated for τ . This method
is non-iterative and allows to immediately compute the final
result as

p̃(t+ τ) = p(t) +
τ

h− 1

h−1∑
i=1

pi − pi−1

∆t
. (2)

B. PARRoT Chirp - Dissemination of Routing Messages and
Context Knowledge

PARRoT relies on an exchange of User Datagram Protocol
(UDP)-based routing messages — which are referred to as
chirps in the following — for adopting the local routing knowl-
edge to the highly dynamic network topology conditions. The
structure of the 40 Byte chirp packet is illustrated in Fig. 3.

Chirp message distribution: Each PARRoT node peri-
odically generates chirp messages based on a fixed interval
∆tchirp which are propagated through the network. Sequence
numbering is used in order to allow the assessment of the
data freshness. Upon reception of a PARRoT chirp message
by node i via forwarder j and originated from d, the following
steps are performed:

• If the Sequence Number (SEQ) for d is not newer than
the one of the last received chirp from d, the message is
discarded and the following steps are omitted.

• Otherwise, the received information is utilized to update
the local knowledge maintained in the Q-Table based with
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Fig. 4. Example for the propagation of chirp messages from originator D
and its usage for reverse path routing from A to D.

the extracted values of V and ΦCoh. The corresponding
process is further described in Sec. III-C.

• After the local handling, the chirp message is forwarded.
For this purpose, the contained mobility information p(t)
and p̃(t + τ) of the forwarder j is replaced by the
corresponding values of node i. The Time to Live (TTL)
is reduced by 1 and V as well as ΦCoh are updated
according to Sec. III-C.

An example for the propagation of chirp messages from
node D and its usage for routing data packets from A to D
is shown in Fig. 4.

• Node D generates a chirp and initializes the reward VD
with the highest possible value 1.0.

• The message is received by the one hop neighbor nodes
C and F which update their Q-Table entries according
to Eq. 3. Both then forward the chirp message with an
updated reward which is calculated as VC/F = Q(D,D).

• The forwarded messages are received and handled by
B and F . The rewards are updated as VB/F =
Q(D, arg maxj Q(D, j)). C and F also mutually receive
the chirp message but discard it as the sequence number
is outdated.

• A finally receives the message originated from D via B
and E and updates the corresponding table entries.

• For routing messages from A to D, node A only
knows about its direct neighbors N = (B,E) and
about the existence of the destination node which is
hidden beyond a black box network region. In each
forwarding step, the message is propagated to neighbor
j = arg maxj Q(D, j).

C. PARRoT Brain - Reinforcement Learning-Based Route
Maintenance

The routing process of PARRoT is inspired by existing
approaches and distills initial ideas by the authors of [16] and
[13]. It consists of two core components which are explained
in the following.

Online routing process: Similar to decentralized ap-
proaches such as B.A.T.M.A.N. and in contrast to path
planning-based protocols such as OLSR, each node has only a
partial view on the overall network topology. In order to route

messages to given destination d, each node i only assesses
the suitability of its direct neighbors N for reaching d —
the intermediate network is treated as a black box. For this
purpose, the numeric values for the end-to-end link quality
Q(d, j) are maintained in a Q-Table. The online routing
decision process can then be formulated as arg maxj Q(d, j)
whereas the one-hop neighbor j with the highest Q value
is chosen as a message forwarder. The implied maintenance
of multiple paths for each destination inherently provides the
protocol with self healing capabilities that allow PARRoT to
quickly recover after failure of nodes.

Update procedure: Upon reception of a chirp message, the
receiver node updates its local knowledge about the reverse
path to the originator using a modified Q-Learning method as

Q(d, j) = Q(d, j) + α [γ(j) · Vj −Q(d, j)] (3)

whereas α is the learning rate and Vj represents the received
reverse path score to the originator d via forwarder j which
is extracted from the chirp message. The variable discount
factor γ(j) serves as a multidimensional routing metric and is
computed as

γ(j) = γ0 · ΦLET(i, j) · ΦCoh(j) (4)

with γ0 being a constant value for ensuring loop-free routing
through a guaranteed metric degradation per hop.

ΦLET(i, j) utilizes an estimation of the Link Expiry Time
(LET) between i and j which takes into the account the results
of the mobility prediction process (see Sec. III-A). For a given
prediction horizon τ , the metric is computed as

ΦLET(i, j) =

{√
LET(i,j)

τ : LET(i, j) < τ

1.0 : else
. (5)

With ∆p = pj − pi being the relative position and
∆v = vj − vi being the relative velocity, the relative
trajectory can be written as ∆p̃ = ∆p+ t ·∆v. The LET(i, j)
between nodes i and j represents the time t where the distance
between i and j exceeds the maximum communication radius
rTX. Thus, rTX =

√
∆p̃2

x + ∆p̃2
y + ∆p̃2

z needs to be solved
for t in order to determine LET(i, j). Substituting

a = ∆v2
x + ∆v2

y + ∆v2
z (6)

b = 2 (∆px∆vx + ∆py∆vy + ∆pz∆vz) (7)

c = ∆p2
x + ∆p2

y + ∆p2
z − r2TX (8)

allows to derive

t1,2 =
−b±

√
b2− 4ac

2a
. (9)

Due to the square root, three different cases can be distin-
guished:

LET(i, j) =


0 : t1 ≤ 0 ∧ t2 ≤ 0

t2 : t1 ≤ 0 ∧ t2 > 0

0 : t1 > 0 ∧ t2 > 0

(10)

These conditions can be interpreted as follows. In the first
case, the link is and will stay unavailable. In the second case,
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Fig. 5. Example trajectories and network topologies for the considered
mobility algorithms.

the link is currently available and will expire at t2. In the last
case, the link is expected to become available at t1 and will
expire at t2.

ΦCoh(j) is a measure for the neighbor set coherence of
message forwarder j based on the difference between the
neighbor sets N at the times t and t− th. According to [16],
it is derived as

ΦCoh(j) =

√
1− N (t)4N (t−∆t)

N (t) ∪N (t−∆t)
(11)

with operator 4 being the symmetrical difference between the
two considered node sets.

IV. METHODOLOGY OF THE SIMULATIVE PERFORMANCE
EVALUATION

In this section, the methodological aspects of the perfor-
mance evaluation are presented. All simulations are performed
using the Objective Modular Testbed in C++ (OMNeT++)
framework [19] jointly with INETMANET which provides
implementation of various MANET protocols. For the per-
formance analysis, the Packet Delivery Ratio (PDR) and the
end-to-end latency of a video streaming application modeled
as UDP Constant Bitrate (CBR) is considered. Within each
evaluation run, sender and receiver are randomly chosen from
the total set of vehicles. The source code of the developed
OMNeT++ implementation for PARRoT is provided in an
open source manner1.

Mobility models: For analyzing the routing behavior of
PARRoT, a mixture of generic and realistic mobility models
is considered. Visualizations of corresponding example trajec-
tories and network topologies are shown in Fig. 5.

• Random waypoint is used an abstract reference scenario
within the parameter selection process. In order to allow
PARRoT to exploit the trajectory knowledge and in con-
trast to conventional implementations, all future waypoint
locations are computed at the beginning of the simulation
run.

• Distributed Dispersion Detection (DDD) [20] is an
algorithm for coordinated swarm-based plume source
exploration in disaster scenarios which ensures intra-
swarm connectivity through communication-aware mo-
bility maneuvers.

• Dynamic cluster hovering is a method for UAV-based
network provisioning for hybrid vehicular networks ini-
tially presented in [21]. Hereby, multiple UAVs dy-
namically adjust their locations for providing network

1Source code available at https://github.com/cedrikschueler/PARRoT

coverage for clusters of ground-based vehicles. Within
the evalation scenario (which corresponds to the default
scenario of the LIghtweight ICT-centric Mobility Simula-
tion (LIMoSim) mobility simulator [21]), a total number
of 10 UAVs operates at a flying height of 30 m. From a
total number of 50 cars, a random subset of 10 vehicles
is chosen to be equipped with communication interfaces.

Reference routing protocols: In the next section, PARRoT
is compared to established routing protocols which implement
different routing philosophies. All of the considered methods
are configured according to their default parameter specifica-
tion for mobile networking.

• AODV is a well-established reactive routing protocol.
• OLSR is a proactive protocol which uses a path planning

approach that involves information about the whole net-
work topology. Moreover, the protocol utilizes so-called
MPRs for minimizing the amount of broadcast messages
within the routing message distribution process.

• GPSR is geo-based routing method which bases its
greedy routing process on minimizing the geo-distance
to the destination in each packet forwarding step.

• B.A.T.Mobile is a geo-predictive extension to
B.A.T.M.A.N. and represents an immediate groundwork
for PARRoT.

According to the empirical analysis of [12], the first three
protocol represent the most commonly used approaches for
VANET routing. A summary about the simulation parameters
is provided by Tab. I.

TABLE I
DEFAULT SIMULATION PARAMETERS

Parameter Value

OMNeT++ version 5.6.1
INETMANET version 4.x
MAC IEEE 802.11g
Path loss exponent η 2.75
Channel model (Rural, Urban) Friis, Nakagami (m=2)
Scenario size (General) 500 m × 500 m × 250 m
Scenario size (Cluster Hovering) 750 m × 600 m × 50 m
Number of runs per configuration 25
Simulation time 900 s
Number of routing hosts 10 s
Mobility update interval ∆t 100 ms
Prediction horizon τ 2.5 s
Waypoint radius rw 10 m
Velocity v 50 km/h
Transport protocol UDP
Traffic load per video stream 2 MBit/s
Learning rate α 0.5
Basic discount factor γ0 0.8
Chirp interval ∆tchirp 0.5 s

V. SIMULATION RESULTS

In this section, the results of the OMNeT++-based simu-
lations are presented. All errorbars show the 0.95 confidence
interval of the mean value over the different simulation runs.
In the following, the impact of different parameters on the
behavior of PARRoT is analyzed before the performance of the
novel protocol is compared to established methods in defined
reference scenarios.

https://github.com/cedrikschueler/PARRoT
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Fig. 6. Impact of the reinforcement learning parameters on the end-to-end
performance of PARRoT.

A. Parameterization of PARRoT

For all following parameter variations, the performance
of PARRoT is analyzed using the rural channel model and
random waypoint mobility.

Learning parameters: An evaluation of different values
of the key reinforcement learning parameters of PARRoT
is shown in Fig. 6. The learning rate α corresponds to the
information gain per received chirp message. Thus, it is
dependent to the relative mobility of the agents and the chirp
interval ∆tchirp. If α is chosen too small, the agent fails to
adopt its decision making to the dynamics of the network
topology. As a consequence of the resulting choice of sub-
optimal routing paths, the end-to-end delay is increased and
the PDR is reduced. If α is chosen too large, the impact of
single chirp messages — which might be impacted by short-
term effects such as local queuing — is overemphasized. In
Fig. 6 (a), it can be seen that α tolerates a certain grade
of derivation from the optimal value without significantly
reducing the end-to-end behavior of PARRoT.

The basic discount factor γ0, which is shown in Fig. 6 (b),
represents an implicit hop punishment for ensuring that the
propagated reverse path quality to the originator decreases if
the number of hops increases. Since the individual metrics that
jointly form γ(j) (see Eq. 4) are multiplied with each other,
it also acts as a scaling factor for the latter. Similar to α, γ0
needs to be chosen large enough such that the information
gain converges with the network dynamics. For γ0 = 1, the
loop free routing condition γ(j) < 1 cannot be guaranteed.
As a consequence, a massive drop of the end-to-end routing
performance can be observed.

Mobility prediction: For improving the communication
robustness through consideration of the relative mobility of
the agents, PARRoT uses mobility prediction for deriving
estimates of the corresponding LETs. Due to this dependency,
the error of the mobility prediction should be minimized.
Fig. 7 shows the resulting errors for the considered mobility
prediction schemes with respect to the prediction horizon τ . As
a reference, the behavior for a naive prediction method which
assumes the vehicle position to stay constant is shown. In this
case, the resulting error can be derived as enaive = v · τ . In the
worst case, the prediction points in the exact opposite direction
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Fig. 8. Impact of the prediction horizon τ on the behavior of PARRoT at
different velocities.

of the actual movement which allows to derived an upper error
bound emax = 2 ·enaive. It can be seen that the waypoint-aware
prediction allows to provide comparable accurate prediction
results. In contrast to the extrapolation-based slope method, it
is able to integrate knowledge about the turning behavior of
the vehicles into the prediction process. For completeness, it
is remarked that the integration of waypoints also strengthens
the robustness of the protocol against inaccurate location
information [13]. As a consequence, PARRoT is configured
to prefer the waypoint-aware mobility prediction method. If
the mobility model does not provide waypoint information,
the slope prediction is utilized as a fallback.

The impact of the prediction horizon τ on the behavior of
PARRoT for different velocities in the range of 50 km/h to
250 km/h is shown in Fig. 8. It can be seen that the link
lifetime estimation of PARRoT is highly depending on the
availability of mobility prediction results. In comparison to the
non-predictive variant (τ = 0), the PDR is increased by up to
75 % if the protocol uses a meaningful prediction horizon. For
higher speeds, the end-to-end routing performance decreases
and smaller values of τ should be preferred in order to adopt
to the increased network dynamics. In addition, PARRoT
becomes more sensitive to an optimal choice of τ .

B. Performance Comparison with Existing Routing Protocols

Random mobility: Fig. 9 show the performance of the
considered routing methods using random waypoint mobility
with the rural channel model. Due to the non-coordinated
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Fig. 10. Comparison PARRoT and existing routing methods (Urban radio
propagation model).

motion, the existence of a routing path between sender and
receiver is not always guaranteed. In order to pay attention to
this aspect while classifying the performance of the different
protocols, a theoretical upper bound — referred to as Optimal
— for the PDR is provided based on post processing-based
analysis of the network topology. However, it is remarked
that this method is only able to consider the mobility-related
aspects and does not account for load-related packet loss. In
comparison to the well-established methods AODV, OLSR,
and GPSR, PARRoT show a massively higher — at least by
45 % — PDR which is close to the optimum robustness.
Moreover, its reinforcement learning-based routing approach
even outperforms the also prediction-based routing method
B.A.T.Mobile by 17 %.

More challenging radio channel conditions are analyzed
in Fig. 10. As the utilized channel model is subject to
probabilistic effects, an upper bound for the PDR cannot be
derived. Here, PARRoT shows a slightly lower PDR than
B.A.T.Mobile. A plausible explanation for this observation
is that the fast fading effects reduce the significance of the
neighbor set coherence metric which then leads to sub-optimal
routing decisions. Future extensions of PARRoT could ex-
plicitly address this issue through dynamic channel-dependent
weighting the different metrics. All protocols suffer from a
higher end-to-end delay due to an increased queuing time at
the MAC layer due to sporadic link loss. The general tendency
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Fig. 12. Routing robustness in realistic mobility conditions (Rural channel
model).

of these findings is also confirmed by the experiments of [22].
A scalability analysis of the considered routing protocols

is shown in Fig. 11. As the size of the scenario is not
varied, the increase of the number of agents corresponds to
increasing the density of network nodes and the grade of
routing opportunities. However, the higher amount of periodic
routing traffic — especially for the proactive methods but
also for neighbor discovery in reactive routing — leads to an
increased probability for collision-related packet loss. It can
be seen that the established routing methods fail to adopt to
the network topology dynamics. Due to the high dependency
of individual routing messages, they are unable to exploit
the higher amount of possible routing paths. Due to the
inherent maintenance of different routing paths per destination,
PARRoT is robust against loss of individual chirp messages.
In contrast to the reference protocols, it is able to leverage the
increased network density for improving the robustness of the
data transfer. However, for more than 20 active hosts, a slight
decrease of the PDR can be observed.

Application-driven mobility: The behavior of the protocols
in more realistic and application-specific mobility conditions is
shown in Fig. 12. For the swarm mobility exploration method
DDD, the corresponding results are visualized in Fig. 12 (a).
Due to implemented communication-aware mobility approach
which proactively adjusts the mobility behavior of the agents
for ensuring swarm coherence, the PDR shows a high general
level and does not vary significantly between the different
routing protocols. Still, the predictive approach of PARRoT
allows to proactively avoid some of the lower outlier values.

The results for the UAV-based cluster hovering analysis are



shown in Fig. 12 (b). This evaluation scenario is characterized
by a complex network topology with a large number of
mobile vehicles which show different mobility characteristics.
In addition, the UAV cluster hovering is based on a ground
traffic-related incremental position updating process which
does not allow to accurately forecast future locations. As
a consequence, the mobility-predictive routing methods are
confronted with imprecise estimations for the relative mo-
bilities. In this complex setting, B.A.T.Mobile is not able to
maintain robust connectivity. In fact, the mobility predictions
even reduce the routing performance of the protocol slightly
beyond the PDR of the established methods. For completeness,
it is remarked that these issues might be partially compensable
through a scenario-specific parameter optimization. Although,
PARRoT is also confronted with the same challenges, the
resulting degradation of the routing performance is far less
distinct. Due to the implemented multi-metric routing ap-
proach which does not only consider the link lifetime but also
the neighbor set coherence, it is less vulnerable to imprecise
mobility predictions. As a consequence, PARRoT is able to
provide robust data delivery even in highly challenging hybrid
vehicular networks.

VI. CONCLUSION

In this paper, we presented the novel routing proto-
col PARRoT for highly mobile robotic networks which
brings together mobility-predictive routing with reinforce-
ment learning-based decision making. In a comprehensive
simulation-based performance evaluation, it was shown that
the consideration of the future relative mobility between the
agents allows PARRoT to achieve robust and efficient data
delivery even in challenging radio propagation conditions.

In future work, we will extend PARRoT for considering
environment information within the link lifetime estimation
process by integrating knowledge about the surrounding obsta-
cles such as buildings. In addition, we will focus on analyzing
the real world performance of the novel routing protocol.
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