Accepted for presentation in: Proceedings of the 2021 Workshop on Ns-3

E

Robust Machine Learning-enabled Routing for Highly Mobile
Vehicular Networks with PARRoT in ns-3

Cedrik Schiiler, Manuel Patchou, Benjamin Sliwa, Christian Wietfeld
Communication Networks Institute
TU Dortmund University, Germany
firstname.lastname@tu-dortmund.de

ABSTRACT

As implied by the high grade of relative mobility, the inherent net-
work topology dynamics render aerial and ground-based vehicular
mesh routing a highly challenging task. Since existing protocols are
often not able to timely adopt their decision-making to the actual
network conditions, they fail to provide reliable and efficient data
delivery mechanisms. In this paper, we present the ns-3 integration
of Predictive Ad-hoc Routing fueled by Reinforcement learning and
Trajectory knowledge (PARROT), a novel reinforcement learning-
enabled routing protocol that integrates knowledge about the future
motion of the mobile agents into the routing process.

CCS CONCEPTS

» Networks — Routing protocols; Network simulations; « Comput-
ing methodologies — Machine learning.

KEYWORDS

Mobile vehicular networks, routing protocol, reinforcement learn-
ing

1 INTRODUCTION

Infrastructure-less communication presents a research field of keen
interest. Although the Wireless Fidelity (WiFi)-based ad-hoc com-
munication is a long encountered example and is also anchored
in the 802.11s [5] standard, upcoming wireless communications
also demand a decentralized approach, as shown in the efforts of
the 3rd Generation Partnership Project (3GPP) in their Cellular
Vehicle-to-Everything (C-V2X) Mode 4 Rel. 14 [1]. However, the
opportunities given by spontaneously deployable Mobile Ad-hoc
Networks (MANETS) in terms of network provisioning and remote
sensing in disaster situations [4][27], the integration of Unmanned
Aerial Vehicles (UAVs) in hybrid Intelligent Transportation Sys-
tems (ITSs), and, future applications, such as 5th Generation of
Mobile Networks (5G) ad-hoc campus networks, motivate further
research. With the lack of a centralized coordination instance, ro-
bust and reliable routing becomes one of the most important tasks in
MANETSs, as all nodes in the network need to organize themselves,
collaborate for a common goal, and face challenging conditions.
As high grades of mobility and hybrid types of vehicles lead to
a dynamically changing network topology with small coherence
times, a fast adaption is needed. Reinforcement learning-based rout-
ing, as initially proposed in [8], omits on complex modeling of the
various influxes of routing, but, rather learns from (multiple) ab-
stract metrics [18] and context information, gained by following
an anticipatory networking paradigm [9].

OMNeT++ ns-3 Hardware-in-
Simulation — Simulaton —» the-loop — EF\)’(eaelrivrxg:(tjs
Model Model Simulation P
Previous Work [23] This Work Future Work

Figure 1: Overall Vision of the PARRoT Evaluation Methods

In [23], we initially presented PARROT as a novel machine learning-
enabled routing method which takes into account information about
the predicted future relative mobility of the network nodes. In an
in-depth simulation campaign in Objective Modular Testbed in
C++ (OMNeT++), PARROT was able to provide significantly more re-
liable communication paths than established routing protocols even
in challenging channel situations. However, for realizing our overall
methodological vision (see Figure 1), it was found that ns-3 pro-
vided a better pathway to the planned Hardware-in-the-Loop (HIL)
simulations and future real-world experiments than the OMNeT++
methodology. The scope of this paper is therefore to migrate the
simulation model to the ns-3 environment, discuss the required
changes, and provide a behavior analysis of PARRoT in ns-3.

The contributions are summarized as follows:

e Presentation of the ns-3 implementation of the PARRoT
routing protocol!

e Parameter optimization for PARRoT within ns-3

e Performance analysis of PARRoT networks in ns-3 and
OMNeT++

The remainder of the paper is structured as follows. After dis-
cussing the related work in Section 2, we present the implemen-
tation of the routing protocol in ns-3 and point out structural dif-
ferences to OMNeT++, considered in the migration process, in Sec-
tion 3. Afterwards, an overview about the methodological aspects,
the simulation setup and constraints is given in Section 4. Finally,
detailed results of the parameter optimization and performance
analysis are provided in Section 5.

2 RELATED WORK

Topology-based MANET routing protocols are classified into re-
active and proactive approaches. Ns-3 provides implementations
of Ad-hoc On-demand Distance Vector (AODV)[20] and Dynamic
Source Routing (DSR)[15] as reactive, and Optimized Link State
Routing (OLSR)[11] and Destination-Sequenced Distance Vector
(DSDV)[19] as proactive implementations. Greedy Perimeter State-
less Routing in Wireless Networks (GPSR)[16] is a geo-based pro-
tocol, which ns-3 interpretation is presented in [13].

!ns-3 simulation model: https://github.com/cedrikschueler/PARROT _ns3

© Owner/Author 2021. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive
Version of Record was published in WNS3 "21: Proceedings of the Workshop on ns-3, http://dx.doi.org/10.1145/3460797.3460810.

 @InProceedings{Schueler/etal/2021a, author = {Cedrik Sch{ü}ler and Manuel Patchou and Benjamin Sliwa and Christian Wietfeld}, booktitle = {Proceedings of the 2021 Workshop on Ns-3}, title = {Robust machine learning-enabled routing for highly mobile vehicular networks with {PARRoT} in ns-3}, year = {2021}, address = {Virtual}, month = {Jun}, }

propietary language for network description

high level wrappers

test Y YV NED language
m helper I B application
) |protocols applications prop. ... |SO/OS[Jé é transport E
c internet mobility structure | | 8 % network =
network i physical
core y ZIOMNeT++

events, schedulers, callbacks, ...

Figure 2: Comparison of the ns-3 and the OMNeT++ Stacks

Reinforcement learning-based routing protocols have evolved
from classical Q-routing [8] to deep learning-based concepts, de-
rived from current developments in artificial intelligence research,
as [14], [2], and [24]. [25] proposes an approach to feed Q-learning
with mobility, link, and energy information. A comprehension of
Machine Learning (ML)-enabled networking is given in [7]. [3]
presents a survey on routing protocols for UAVs networks. Ad-hoc
communications for upcoming 5G and beyond technologies are
discussed in [12] and [17].

3 IMPLEMENTATION OF REINFORCEMENT
LEARNING-BASED PARROT ROUTING IN
NS-3

In this section, the structure of routing protocols in ns-3 and im-

plementation aspects of PARRoT will be discussed. Afterwards, we

briefly compare ns-3 and the INET stack in OMNeT++ as depicted

in Figure 2.

3.1 Routing Protocol Structure in ns-3

Existing MANET routing protocols in ns-3, such as AODV, DSDV,
and OLSR, are subclasses of Ipv4RoutingProtocol in their corre-
sponding namespaces. Although an implementation of an Ipv6-
RoutingProtocol is located in the ns-3 main branch, none of the
established MANET protocols has been transferred to support Ipvé6
yet. However, Ipv4RoutingProtocol serves as a abstract base class,
closely related to the Linux’ equivalent routing functions, and re-
quires interfaces for:
e RouteOutput — A function that is responsible for the route
lookup for an outgoing packet.
e RouteInput — A function that is signalling, if an incoming
packet will be processed or not.

e Notify{InterfaceUp, InterfaceDown, NotifyAddAddress,

NotifyRemoveAddress} — Interfaces, to notify the routing
protocol about changes of the handled interfaces and ad-
dresses.

Routing protocols in ns-3 model an entity within the Internet
Protocol (IP) stack, which is installed onto a Node and utilizes sock-
ets, to approach the underlying NetDevices, representing Network
Interface Cards (NICs). A node is further complemented by a mo-
bility algorithm, additional applications, and protocol stacks. The
nodes are connected via channels, on which physical effects as delay,

noise, and propagation are modeled, and thereby, form the network.
Figure 3 shows the structure of a node and the encapsulation of the
routing protocol within the internet stack.

Node

Application | | Application - = = o= Application
1 2 N

Internet

Stack - - - -

Callbacks

Forwarding

Ipv4RoutingProtocol

RouteOutput

Routelnput Deny packet

| NetDevice |

| Channel |

Figure 3: A Network Node with a Ipv4RoutingProtocol

The interface function RouteOuput provides all routing proto-
cols a certain degree of freedom in terms of route selection al-
gorithms, but, however, requires the protocol to return a generic
representation of an Ipv4Route, which is described by a tuple <
destination address dst, source address src, gateway gw, device
dev >. Usually, the routing protocols maintain a routing table, in
which knowledge about the network topology is stored, and, used
to look up the best available route to the packet’s destination. Ad-
ditionally, the protocols can trigger actions like queuing or route
discovery at this point, if no route is available. The interface func-
tion RouteInput comes along with different callback functions for
uni- and multicast forwarding, local delivery, and errors that are
passed in. The protocol decides, whether it is capable and responsi-
ble for processing the incoming packet, and upon its decision, the
corresponding callback is invoked and the packet is accepted or
declined.

While these functions accomplish the forwarding mechanism of
packets, all routing protocols demand the periodic and/or aperiodic
exchange of information about the current network topology. For
this purpose, a dedicated socket is bound to a protocol port, listens to
all incoming messages, and redirects them to a callback function. If
a node receives a routing broadcast from another node, it evaluates
the transmitted metrics within the callback function and triggers
further processing such as forwarding the routing message. An
example propagation of routing messages is given on the example
of PARROT in Figure 5.

3.2 PARROoOT Setup

The initial proposal of PARROT [23] was developed in OMNeT++
and, besides rich parameterization options, consists of three core
components, whose implementation aspects are discussed in the
following. The overall architecture adapted to ns-3 is shown in
Figure 4.

Mobility Domain

Positions Predictions = Waypoints
p(t) p(t+7) w(t)

—————— l» —Cross-Layelr Interface- - -l ---

Mobility Prediction Real trajecto
wl)

p(t) p(t+7)

Reinforcement Learnin

7 _Shareknowiedee . | |Route
@ s nput
N Teceve informatish —e

Route Ipv4

) i Output .
Routing Messaging ~———() Routing
@t,, = Notify | Protocol
Sockets

Figure 4: Architecture of PARRoT’s ns-3 Implementation

3.2.1 Parameterization and Cross-layer Referencing in PARRoT. As
introduced in Section 3.1, PARROT is also implemented in the IP
stack. The routing interfaces RouteOutput and RouteInput trig-
ger a lookup on the routing table that is stored by the node and
fed by a greedy selection from a corresponding Q-table. The Q-
table holds route-dependent metrics in a PARROT Destination Ele-
ment (PDE) struct for each concerned (destination, gateway)-pair.
Additionally, as required by the used metrics for the Q-learning
algorithm, the node keeps track of its neighbors and stores its se-
quence number, position, predicted position, and a timestamp of
last contact, in a PARRoT Neighbor Element (PNE). PARROT is im-
plemented as a proactive protocol. Its main parameter regarding
the communication behavior is the periodic update interval t,, for
broadcasting routing messages, which we refer to as chirps. The
PredictionWidth r describes not only the scope of the mobility
prediction but, also the maximum hold time for local routing entries.
This parameter is usually a multiple of ¢,. Regarding the mobil-
ity prediction, an estimated communication range r. needs to be
specified. It can be calculated according to a free space path loss,
respecting the radio properties, an attenuation coefficient 7, and
the receiver sensitivity. While this parameter describes the outer
edge of the communication range, the range budget r;, can adjust
the estimation with an offset. The last parameter of the mobility
prediction is the prediction method, where PARROT supports a
history-based and a waypoint-aware method. However, PARRoT
utilizes a cross-layer reference to the mobility application, to make
predictions. Finally, the reinforcement learning update rule

Q(d’]) = Q(d’J) +ta [YO : (I)LET(i’j) : q)COh(j) : ‘/J - Q(d’.})] s (1)

that depends on the destination d, the value V; for a neighbor j,
the cohesion ®cop(;) and the Link Expiry Time (LET) ®rg1(i, /)
between the current node i and j, can be fine-tuned by the learning
rate o and a constant discount factor yo. A default parameterization
will be carried out in Section 5.1.

3.2.2 Utilization of Trajectory Knowledge. PARROT agents share
knowledge about their predicted position p(¢ +) to anticipate the

future topology in their local scope. To achieve accurate predictions,
knowledge from the mobility domain is leveraged. We introduce
three different stages of cross-layer interaction with the mobility
control algorithm:

e Low: Only position data is provided. The agent stores the
position history independently and extrapolates the future
position.

e Medium: Besides the historical positions, that are still main-
tained as a backup, the agent receives information about
the next planned waypoints, enabling an iterative prediction
process with higher accuracy.

e High: We also introduce the concept of modern mobility
algorithms, which are considered experts for their domain.
Therefore, we aim to remove the prediction process from the
routing agent and hand it back to the mobility domain. This
enables the prediction to take into account more advanced
behavior influences, such as swarm coherence [22] for UAVs
and platooning and intersection-awareness for vehicles. The
predicted position p(t + 7) is then provided by an interface
for the routing algorithm.

3.2.3 Distribution of Routing Messages. To keep the agent’s knowl-
edge up-to-date, all agents schedule chirps, which are the routing
messages in PARRoT, and are broadcasted after every expired time
interval t,. The messages contain the address of their originator, the
current and predicted position, two metrics, a Time to Live (TTL),
and a sequence number, which in total produce 40 Byte of rout-
ing overhead to be shared among the agents. Messages in ns-3
are implemented as Header subclasses, that require an interface
for serialization and deserialization into and from a Byte Buffer
respectively.

Initially, the reward metric of the chirp is set to the value of
1.0. The sequence number is a counter, managed by the agent,
and incremented after every periodic chirp. The sequence number
and the originator’s address are never changed when other agents
forward the message.

Upon the reception of a chirp, the neighbor information is up-
dated, the actuality and information value is assessed, and reinforce-
ment learning is performed. Afterward, the agent checks, whether
the gateway over which the chirp was received, is considered as
the best gateway to reach the originator d. If this is not the case, we
assume that the other (better) route has already been propagated
earlier. Otherwise, the agent learned a better routing policy and
needs to share its knowledge. Though, the information of the re-
ceived chirp is updated, setting the reward field V to the maximal
value at the agent

V = arg max Q(d, j). (2)
J

The position fields and @) metric are overwritten by the agent’s
data and the TTL is decremented before forwarding the chirp. This
algorithm produces the propagation of chirps through the network,
sharing the best effort estimation as a reward metric V. Based on the
received information and learned knowledge, routes are built based
on the reverse paths of incoming chirps, as depicted in Figure 5 for
a route from node S to node D.

3.2.4 Autonomous Routing Decisions. PARRo0TS reinforcement learn-
ing system relies on Q-learning and yields an abstract metric Q(d, j),

@Repeat 2-4

16
Chi Packet B
rp rocessin
®|n|t|a||zat|on V=190 p I g @Greedy hop
é_—\\ selection
D
®Forward updated Reverse
Remforcement chirp ®route

Learnlng N ,, building

7%

@Repeat 2-4

Figure 5: Example Route Building Process

according to Equation 1, that rates the quality of a neighbor j for a
requested destination d and is updated in online learning. Agents
estimate a LET for a forwarding candidate, by spectating their own
and the candidate’s trajectory, which is known from received chirps,
and, thus, getting the metric ®1pT. Besides a contribution to the
reinforcement learning, the assumed availability of all entries, con-
cerning this neighbor is expressed by min(z, ®1gt). Therefore, a
longer persisting valid route to a destination via a specific forwarder
needs to be re-acknowledged by another incoming update. The fur-
ther quality of a forwarder is described by ®¢.p, [18], which is a
representation of the agents’ cohesion. Sets of current and previous
neighbors are maintained in PNEs by each agent and evaluated
for their quantity ratio. The learning process includes the hyperpa-
rameters a and yp. The former describes the rate of adaption and
implicitly weights the importance of newly incoming packets. The
latter is of special interest for situations, in which all incorporated
metrics become 1.0, as is guarantees the degradation of multiple
hops along a path, and, thus, prevents the creation of routing loops.

3.3 Routing Protocol Migration Among
Simulators

While OMNeT++ represents a general purpose simulation environ-
ment, the IP stack as well as the routing protocol implementations
are provided by the INET-based [6] INETMANET [21] framework.
For better readability, the term OMNeT++ is used in the remainder
of this manuscript for describing the resulting overall simulation
system.

A major difference is the usage of proprietary description lan-
guages in OMNeT++, while ns-3 omits those and is a pure C++ frame-
work. The used Network Description (NED) language addresses a
scalable way of describing components, interfaces, modules, and
networks while giving full support for inheritance and hierarchical
nesting of submodules. The so assembled modules retain their func-
tionality by underlying C++ implementations. Another difference
to ns-3 is the . msg-language, which also allows an abstract descrip-
tion of packets and provides automatic (de-)serialization functions,
and generates corresponding source files. The third difference is
the way of study parameterization, which is realized through .ini
initialization files. OMNeT++ allows the definition of extensible
scenarios, easy-to-use parameter studies, and an automatic run
configuration for parallel execution.

Another difference in structure is the strict adherence to the layer
ordering in the INET framework, which is based on the ISO/OSI ref-
erence model. The routing protocol works directly with the network
layer and is only responsible for handling the referenced routing
table. This routing table is in turn connected to the forwarding
process. Thus, compared to ns-3, an abstract Ipv4RoutingTable
also exists, but it is only modified with entries from the routing
protocol and does not require the provision of interfaces such as
RouteInput and RouteOutput.

4 METHODOLOGY

In this section, we describe the simulation setup that was used for
the evaluation. As we aim to compare the PARROT implementation
in both simulators, the setup was oriented to the parameterization
that we used in [23]. As a reference scenario, we look at a three-
dimensional UAV scenario with 10 agents and a 2 Mbps constant
bit rate User Datagram Protocol (UDP) stream between two agents.
A start phase of 5 s passes before the traffic flow starts, to allow the
routing protocols to build up their routes. The mobility pattern is a
controlled waypoint model, which equals the well known random
waypoint mobility, but, with the extension, that the next target-
ted waypoint can be provided, which is utilized by the mobility
prediction of PARROT as described in Section 3.2.2. The available ns-
3 FriisPropagationLossModel is modified to calculate the path
loss L with an exponential loss coefficient of # = 2.75. In the error
model, the transmission power, and receiver sensitivities are aligned
to OMNeT++’s default parameters. All parameters are summarized
in Table 1.

Table 1: Default Parameters of the Evaluation Setup

Parameter Value

Runs 25

Simulation time 900s

Start phase duration 5s

MAC 802.11g

Bit Error model NistErrorModel
Noise Figure 0dB

Rate Control
Transmission power
Receiver sensitivity
Channel model
Mobility model
Playground size
Number of hosts
Speed

Traffic

IdealRateControlManager
20dBm

-85 dBm

Friis (n = 2.75)
Controlled waypoint
500m x 500 m x 250 m

10
km
0%y

UDP constant bit rate (2 Mbps)

For data collection, we use ns-3’s FlowMonitor to track sent
and received packets, and gather the mean end-to-end latency and
Packet Delivery Ratio (PDR) as Key Performance Indicators (KPIs)
according to [10].

In Section 5.2, we inspect the memory usage and execution time
for both simulation tools and an increasing number of agents. For
this purpose, we created the evaluation setup according to Table 1

ns-3

e
o
!

Negative range budget
increases performance

o
3
)

High impact of over-
estimation in OMNeT++

Packet Delivery Ratio
o o
3 o

o
N
!

©
w

-30 -20 -10 0 10 20 30
Range Budget rp, [m]

Figure 6: Application of Different Range Budgets

in both simulators. Console output and result logging were disabled
to minimize external influences. The results were monitored for 15
runs by an external tool.

5 RESULTS

In this section, we present the simulation results obtained by ns-
3. The error bars show the 95 % confidence interval of the mean
values over all runs. We refer to the corresponding results of our
work [23] when taking OMNeT++ results into account. In general,
we utilize the default parameterization of our previous work as
an entry point for this work. We then carry out a new parameter
optimization, to gather the ns-3 configuration of PARROT. Also,
we evaluate the scalability of different scaled PARRoT networks in
terms of consumption in both simulators.

5.1 Stepwise Parameter Optimization of
PARRoT

In the following, we optimize the parameters ry, @, yo, and 7 with
the default scenario setup in three steps. First, we vary the range
budget rp, in the interval of [-30, 30] m. As seen in Figure 6, a change
of the estimated communication range has a significant impact
on the end-to-end routing performance. For the simulation setup
and its parameters, a range of r. = 230 m is assumed. Applying
a range budget of r, = —30 m therefore leads to an estimation of
r = 200 m. We observe that an overestimation of communication
range leads to performance drains, as links are falsely assumed to
be available. This effect is significantly more distinct in OMNeT++.
However, while the latency remains within a quite consistent range,
a negative range budget has a positive effect on the PDR. This is
explained by the fact, that links are not considered available up to
the outer edge of the real range, where low Signal-to-Interference-
plus-Noise-Ratio (SNIR) conditions may lead to packet errors, even
though the reception is possible. Based on this funding, we specify
rp = —12.5m as default value for the following simulations.

In Figures 7 and 8, we see the performance evaluation of the learn-
ing rate a and the basic discount factor yy respectively. Concerning

0.85 1
o Higher performance loss
% due to slow
v 0.80 learning in OMNeT++
P
g
= 0.751
=)
@
% 0.701
©
o
0.65 1
0.60
01 02 03 04 05 06 07 08 09 10
Learning Rate a
Figure 7: Performance for Different Learning Rates
0.90
0.85

0.80

Low impact of high

metric degradation h

in ns-3 \
1
\

Packet Delivery Ratio
o
~
[$)]

=)

~

o
!

o

(2}

[$)]
L
o

01 02 03 04 05 06 07 08 09 10
Basic Discount Factor yq

Figure 8: Performance for Different Basic Discount Factors

the learning rate, we notice a performance drop for parameteri-
zation with lower values due to a slower learning phase and the
resulting inability to adapt adequately fast to topology changes. For
higher a, the PDR again slightly drops, as incoming packets are
weighted quite high, and, therefore, the stored knowledge becomes
volatile. We observe a local maximum for a = 0.4, which we define
as the default value. However, it is remarkable, that although the
characteristics of the curve are similar to our previous results in
OMNEeT++, the effect of slower learning is far less distinct in ns-3.
Overall, the influence of « is weaker than in OMNeT++. The basic
discount factor yy is responsible to guarantee a path degradation
along multiple hops. Thus, a value of 1.0 is invalid, as long routes,
and potentially routing loops, can occur, which we can identify in
Figure 8. In contrast to the OMNeT++ results, the PDR does not
show an impact of a higher metric degradation, which means the
effect of punishing the path score for every hop too high, and, im-
plicitly limiting the routing to short routes. A value of yp = 0.7 is
set as default.

The last parameter to be optimized is the prediction width 7. As
described in Section 3.2.1, this is not only the width of the mobility

prediction but also a time constraint for routing entries. Figure 9
shows the PDR for different widths and different speed profiles of
50 and ZSOkTm. Correspondingly to OMNeT++, the performance
shows a high gain through the application of mobility prediction,
compared to 7 = 0.0. Also, the overall performance drops with
increased agent speed. Another funding we can verify here is that
the best choice of 7 is delimited to a peak value for higher speeds,
while lower speeds show a plateau of equivalent choices of 7. Also,
the best choice 7 is described by a smaller value for higher speeds.
Therefore, the parameterization does not only require a smaller
value but becomes more sensitive. The effect of plateaus is a little
more expressive in the ns-3 results due to the applied range budget.

As we conclude our parameter optimization and discussed some
differences to our results in OMNeT++, Table 2 lists the resulting
parameterization.

Table 2: Parameterization of PARRoT in ns-3

Protocol Parameter Value
Chirp Interval 0.5s
Learning Rate 0.4
Basic Discount Factor 0.7

PARRoOT
© Range Budget -12.5m
Prediction Width 2.0s
Prediction Method Waypoint

5.2 Analysis of Time and Memory
Consumption for PARROT Scenarios

In Figure 10, we show the execution time and memory consumption
for an increasing number of PARROT agents participating in the
network for a simulated time of 900 s. With execution time, we
refer to the time between starting and ending the simulation, not
including the build process. In terms of memory usage, we used
pidstat to capture the corresponding process id and measured

0.9
0.8 Plateaus for lower speeds
Re)
& 50 Higher PDR for lower prediction widths
>0.7
[
=2
©
Q06 i -
= / km
% / 250 %
o] T Higher performance loss.
o 05 i due to speed
ns-3
041 £ e OMNeT++

00 05 10 15 20 25 30 35 40
Prediction Width T [s]

Figure 9: Prediction Width for Low and High Speeds

ns-3
200 - OMNeT++ i
//
,/

5 /
E 150 4 ¥
(0] : /
c Higher dependency ,/
= on the network scalg/" ,*
< 100 in OMNeT++ /}Z
o e ,
= Overall bias in .
3 memory consumption
[0}
>
w50

O .

5 10 15 20 25
Number of Agents

Figure 10: Analysis of Time and Memory Consumption

the resident set size, which is described as the occupied physical
memory of the task. The simulations were carried out on the same
server in order to provide comparable conditions.

Ns-3 shows a lower and nearly constant memory occupation,
that is not significantly affected by the number of agents. OMNeT++
on the other hand requires more than double the amount of memory
for a five node network simulation. With increasing agents, more
memory is consumed by the simulation.

In addition to the study of memory efficiency, time consumption
is of particular interest to users of network simulators. While both
simulators can perform the simulation for a five agent network in
less than 10 minutes, a growth in acquired time can be observed
for both. Although ns-3 is also affected by the increased network
complexity, the execution time remains at a considerable low level,
while the OMNeT++ setup shows a higher dependency on the net-
work size and makes it unsuitable for extensive studies. [26] also
compares the performance of network simulators for a more basic
static network with less traffic load and also indicated ns-3 to be
the more efficient simulator compared to OMNeT++.

6 CONCLUSION

In this work, we presented the novel PARRoT simulation model
for ns-3 which was derived from an existing implementation in
OMNeT++. Although there are differences between the two simu-
lation setups that demand further investigation — the parameter
optimization has revealed a higher impact of the range budget and a
smaller effect of the reinforcement learning hyperparameters — the
general behavior of PARRoT could be replicated. The simulation
efficiency analysis has shown ns-3 to be the faster and more effi-
cient simulator in terms of the considered MANET routing context.
In future work, we will leverage the new ns-3 evaluation setup
for performing hardware-in-the-loop simulations of PARROT as a
preparatory step before a comprehensive real-world performance
evaluation is performed.

ACKNOWLEDGMENT

This work has been supported by the German Research Foundation (DFG) within
the Collaborative Research Center SFB 876 “Providing Information by Resource-
Constrained Analysis”, projects A4 and B4 as well as by the German Federal Ministry

of Education and Research (BMBF) in the project A-DRZ (13N14857) and the Ministry
of Economic Affairs, Innovation, Digitalization and Energy of the state of North Rhine-
Westphalia in the course of the Competence Center 5G.NRW under grant number
005-01903-0047, and in the course of the project Plan & Play under grant number
005-2008-0047.

REFERENCES

[1] 3GPP. 2018. Service Requirements for V2X Services. Technical Report 22.185. 3rd

[10

[11

(12

[13

=

[

]

Generation Partnership Project (3GPP). Version 14.4.0.

Ramy Ali, Bilgehan Erman, Ejder Bastug, and Bruce Cilli. 2020. Hierarchical
Deep Double Q-routing. In ICC 2020 - 2020 IEEE International Conference on
Communications (ICC). Dublin, Ireland, 1-7.

Muhammad Arafat and Sangman Moh. 2019. Routing Protocols for Unmanned
Aerial Vehicle Networks: A Survey. IEEE Access 7 (2019), 99694-99720.

Usman Ashraf, Amir Khwaja, Junaid Qadir, Stefano Avallone, and Chau Yuen.
2021. WiMesh: Leveraging Mesh Networking For Disaster Communication in
Poor Regions of the World. arXiv preprint arXiv:2101.00573 (2021).

Michael Bahr. 2006. Proposed Routing for IEEE 802.11s WLAN Mesh Networks
(WICON °06). Association for Computing Machinery, New York, NY, USA, 53ASes.
Zoltan Bojthe, Levente Meszaros, GyAﬁrgy Szazké, Rudolf Hornig, Andras Varga,
and Attila TAdrA(ik. 2020. INET Framework. https://github.com/inet-framework/
inet.

Raouf Boutaba, Mohammad Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shabhriar, Felipe Estrada-Solano, and Oscar Caicedo. 2018. A Comprehensive Sur-
vey on Machine Learning for Networking: Evolution, Applications and Research
Opportunities. Journal of Internet Services and Applications 9, 1 (2018), 16.
Justin Boyan and Michael Littman. 1994. Packet Routing in Dynamically Chang-
ing Networks: A Reinforcement Learning Approach. In Advances in neural infor-
mation processing systems. San Francisco, CA, USA, 671-678.

Nicola Bui, Matteo Cesana, S Amir Hosseini, Qi Liao, Ilaria Malanchini, and Joerg
Widmer. 2017. A survey of Anticipatory Mobile Networking: Context-based
Classification, Prediction Methodologies, and Optimization Techniques. IEEE
Communications Surveys & Tutorials (2017).

Gustavo Carneiro, Pedro Fortuna, and Manuel Ricardo. 2009. Flowmonitor: A
Network Monitoring Framework for the Network Simulator 3 (ns-3). In Pro-
ceedings of the Fourth International ICST Conference on Performance Evaluation
Methodologies and Tools. Brussels, BEL, 1-10.

Thomas Clausen, Philippe Jacquet, Cédric Adjih, Anis Laouiti, Pascale Minet,
Paul Muhlethaler, Amir Qayyum, and Laurent Viennot. 2003. Optimized Link
State Routing Protocol (OLSR). (2003).

Baldomero Coll-Perales, Javier Gozalvez, and Juan Maestre. 2019. 5G and beyond:
Smart Devices as Part of the Network Fabric. IEEE Network 33, 4 (2019), 170-177.
Anténio Fonseca, André Camdes, and Teresa Vazdo. 2012. Geographical Routing
Implementation in ns3 (SIMUTOOLS ’12). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Brussels, BEL, 353—
358.

[14

[15

[16

(17]

=
&

[19

[20

[21

[22

[23

™~
=)

[25

[26

[27

Syed Jalil, Mubashir Husain Rehmani, and Stephan Chalup. 2020. DQR: Deep
Q-routing in Software Defined Networks. In 2020 International Joint Conference
on Neural Networks (IJCNN). Glasgow, UK, 1-8.

David Johnson, Yih-Chun Hu, and David Maltz. 2007. The Dynamic Source Routing
Protocol (DSR) for Mobile Ad hoc Networks for IPv4. Technical Report. RFC 4728.
Brad Karp and Hsiang-Tsung Kung. 2000. GPSR: Greedy Perimeter Stateless
Routing for Wireless Networks. In Proceedings of the 6th annual international
conference on Mobile computing and networking. New York, NY, USA, 243-254.
Muhammad Khan and Kok-Lim Yau. 2020. Route Selection in 5G-based Flying
Ad-hoc Networks using Reinforcement Learning. In 2020 10th IEEE International
Conference on Control System, Computing and Engineering (ICCSCE). Penang,
Malaysia, 23-28.

Guido Oddi, Donato Macone, Antonio Pietrabissa, and Francesco Liberati. 2012.
A Proactive Link-failure Resilient Routing Protocol for MANETs based on Rein-
forcement Learning. In 2012 20th Mediterranean Conference on Control Automation
(MED). Barcelona, Spain, 1259-1264.

Charles Perkins and Pravin Bhagwat. 1994. Highly Dynamic Destination-
sequenced Distance-vector Routing (DSDV) for Mobile Computers. ACM SIG-
COMM computer communication review 24, 4 (1994), 234-244.

Charles Perkins and Elizabeth Royer. 1999. Ad-hoc On-demand Distance Vector
Routing. In Proceedings WMCSA’99. Second IEEE Workshop on Mobile Computing
Systems and Applications. New Orleans, LA, USA, 90-100.

Alfonso Quintana. 2020. INETMANET Branch of INET Framework. https:
//github.com/aarizaq/inetmanet-4.x.

Craig Reynolds. 1987. Flocks, Herds and Schools: A Distributed Behavioral Model.
In Proceedings of the 14th annual conference on Computer graphics and interactive
techniques. New York, NY, USA, 25-34.

Benjamin Sliwa, Cedrik Schiiler, Manuel Patchou, and Christian Wietfeld. 2021.
PARROT: Predictive Ad-hoc Routing Fueled by Reinforcement Learning and
Trajectory Knowledge. In 2021 IEEE 93rd Vehicular Technology Conference (VIC-

Spring). Helsinki, Finland.
Fengxiao Tang, Bomin Mao, Zubair Fadlullah, Nei Kato, Osamu Akashi, Takeru

Inoue, and Kimuhiro Mizutani. 2018. On Removing Routing Protocol from Future
Wireless Networks: A Real-time Deep Learning Approach for Intelligent Traffic
Control. IEEE Wireless Communications 25, 1 (2018), 154—160.

Valmik Tilwari, Kaharudin Dimyati, Mohammad Hindia, Anas Fattouh, and
Iraj Amiri. 2019. Mobility, Residual Energy, and Link Quality Aware Multipath
Routing in MANETs with Q-learning Algorithm. Applied Sciences 9, 8 (Apr 2019),
1582.

Elias Weingartner, Hendrik Vom Lehn, and Klaus Wehrle. 2009. A Performance
Comparison of Recent Network Simulators. In 2009 IEEE International Conference
on Communications. IEEE, Dresden, Germany, 1-5.

Yoong Zeng, Qingqing Wu, and Rui Zhang. 2019. Accessing from the Sky: A
Tutorial on UAV Communications for 5G and Beyond. Proc. IEEE 107, 12 (2019),
2327-2375.

