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Abstract—Private 5G networks are considered key enablers for
allowing industrial companies to deploy fully digitized production
environments in an ad-hoc manner. Based on the foundation
of exclusively assigned frequency spectrum resources, a guar-
anteed quality of service level can be achieved. However, strict
requirements and regulations regarding antenna placement and
interference with neighbors impose tough challenges on enter-
prises without expertise in communication network planning.
For closing this gap, we propose an unsupervised learning-
based network planning framework capable of rapidly and
autonomously finding suitable solutions for antenna placement
based on given environments and service quality, while satisfying
regulatory restrictions. Results show that our proposed system
reliably and rapidly calculates antenna positions and powers
for realistic private 5G network scenarios. Temporary network
deployments, e.g., Formula 1 tracks inside the given private 5G
network, can be planned within minutes based on pre-calculated
radio environmental maps.

I. INTRODUCTION

An increasing amount of emerging application domains
are moving towards fully digitized environments, aiming at
improving the efficiency and flexibility through the deploy-
ment of automation and data exchange technologies. A major
field of this new generation of transforming environments,
such as the field of Industrial Internet of Things (I-IoT), is
addressing challenging and diverse requirements on underlying
communication infrastructures. In this context, a key feature of
upcoming 5G is a new generation of private 5G networks, also
referred to as campus or non-public networks. These private
physical or virtual cellular systems are aiming at providing
reliable wireless connectivity for demanding and even critical
applications, while maintaining full control and flexibility for
private use by industry, public institutions and local authorities.
A significant advantage to provide and ensure this increased
Quality of Service (QoS) demand is the opportunity to operate
even private networks in licensed spectrum bands. While
in some countries, mobile network operators offer private
network solutions based on e.g., network slicing approaches,
other countries have opened specific spectrum bands for local
and dedicated use. However, even unlicensed spectrum can
be seen in cases of closed and controllable environments as a
valid solution for private networks, such as remote rural areas.

A. Elaborating the Need for Automated Network Planning

The deployment of private 5G networks is not only dis-
cussed in the reference application of stationary long-term

Public Major Events
(e.g. Sports, Concerts)

Rapidly Varying Logistics Emergencies
(e.g. Static / Temporary Hospitals)

Fig. 1. Example application domains for static and temporary private networks
with high demand for automated and fast network planning results.

networks, but also of particular relevance when a tempo-
rary network with still very demanding requirements for the
communication network has to be realized locally. Examples
of such temporary networks are major international events
(Formula 1, America’s Cup), where large amounts of data
are required for event operation as well as for the real-
time integration of the audience with low latencies and high
reliability. In our previous research regarding Radio Access
Network (RAN) slicing, optimal network planning was iden-
tified as the main prerequisite for the operation of low latency
slices [1]. Also, in the field of automated intralogistics, non-
stationary ad-hoc 5G network operation is essential for the
continuous adaptation of reliable network solutions to very
rapidly changing application environments. Not least, highly
reliable static as well as temporary communication networks
are also essential for emergencies or disasters, e.g., to provide
temporary or static hospitals with a reliable communication
solution for all medical emergencies or remote operations (cf.
Fig. 1). However, despite short-term deployment goals for ad-
hoc 5G networks or when local conditions change rapidly in
static networks, deployments for such demanding requirements
call for extensive and reliable network planning in advance.
Current planning methods are very well designed for the long-
term and reliable operation of cellular radio networks, but
associated with significant limitations for rapid planning ob-
jectives. On the one hand, a high level of resources and expert
know-how is required for the operation of specialized tools,
while on the other hand the high manual effort and the required
wealth of experience for fine-tuning and monitoring do not
do justice to the rapid pace of use. As a consequence, the
necessary planning quality cannot be achieved cost-efficiently
with a large number of consecutive or parallel network areas.
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Fig. 2. Overview of the processing steps of the Automated Network Planning Framework from user input to network planning result.

B. Proposed Automated Rapid Network Planning System

To this end, this paper proposes a concept for an automated
network planning system that effectively supports potential pri-
vate 5G network operators in the detailed specification of the
required network design. For this purpose, a Machine Learn-
ing (ML) procedure is used which utilizes clustering-based
unsupervised ML methods. The network planning framework
is then evaluated using a realistic private 5G network with
temporary deployments. The proposed system for automated
network planning is presented and detailed in Sec. III.

The remainder of this work is structured as follows: Sec.
II gives an overview of related work regarding automated
network planning concepts. The detailed description of our
proposed and developed system is given in Sec. III, followed
by its evaluation in Sec. IV. Finally, a conclusion and details
to future work are presented in Sec. V.

II. RELATED WORK

Related work in the field of automated network planning
mainly focuses on traditional approaches rather than utilizing
ML. Often optimization concepts like genetic algorithms are
used in combination with analytical (channel) models, e.g.,
in [2] as well as in [3]. Similar works were conducted by
Zhang et al. [4] using a bio-inspired approach called Particle
Swarm Optimization, as well as by Allen et al. [5] relying on
the so-called Simulated Annealing. A related approach based
upon Nested Square Pattern is utilized in [6] but with the aim
of optimal object localization rather than network planning.
The main difference of the described approaches above to the
novel concept introduced in this work is the complexity of
the underlying environment, i.e., the channel model or terrain
information used, as our automated network planning system
can easily scale up complexity by integrating any (network)
simulation software, and possibly Hardware-in-the-loop (HIL)
concepts. In contrast, above works use analytical channel

models, neglecting local conditions. Furthermore, in contrast
to the traditional approaches, our system can incorporate
regulatory restrictions into the network planning. There is
also related work using ML in general for network planning
purposes, e.g., by Morocho-Cayamcela et al. [7] to lower
the environmental uncertainty in wireless propagation with
deep learning. Moreover, Dai et al. [8] successfully implement
and analyze an ML-based network planning system based
on genetic and greedy algorithms. Similar to the approach
presented in this paper, Unsupervised Learning methods are
used in [9] and [10] for automated network planning. Finally,
ML (Deep Neural Networks) is used in [11] to predict channel
conditions in a given area based on its satellite images, which
is planned to be incorporated to further improve the accuracy
and computation speed of the environment model.

III. METHODS

The developed automated network planning framework will
be described based on Fig. 2, progressing from top left to
bottom right.

In the input and initialization phase, the 5G Campus Net-
work Planner that we previously developed and which is
available online1 serves as a starting point for the automated
network planning described in this work. It supports the
planning of a private 5G network by staking out an area,
e.g., the company’s premises, and provides a predicted fee for
acquiring the frequency usage license. In our work, the given
polygon determines the area, in which the automated network
planning should be conducted.

This polygon serves as the input for our pre-processing
system, which prepares the environment for the automated net-
work planning framework. For this, a bigger rectangle around
the private network polygon is created to incorporate possible

1Available: https://campusnetzplaner.kn.e-technik.tu-dortmund.de



TABLE I
PARAMETERS PASSED ON TO THE ALTAIR WINPROP© RAY-TRACING

SIMULATION FRAMEWORK

Parameter Description Value

Antenna position
Positions based on longitude, 

latitude, and height

Building centroids

(min. height 5m)

Antenna output power
Equivalent Isotropically Radiated 

Power (EIRP) in dBm

[15, 18, 21, 24, 27, 30, 33, 

36, 39, 42]

Antenna height offset
Offset between building height 

and antenna height in m
5

Antenna radiation pattern
The radiation pattern of the 

deployed antennas
Omnidirectional

Antenna frequency Center frequency in GHz 3.75

Simulation model
The simulation model used in the 

ray-tracing software

Standard Ray Tracing 

(SRT) model

Prediction height
The height level where the 

received power is evaluated in m
1.5

reflections from outside the site into the Radio Environmental
Map (REM) simulations which follow later. Environment data
which mainly consists of building information is downloaded
automatically from OpenStreetMap (OSM)2 based on the
polygon of the premise and its surroundings. The different
polygons and the respective buildings are then converted into
an internal representation based on the Python programming
language (ver. 3.7) library geopandas3 which includes conve-
nient modules for converting different geographic coordinate
systems and conducting geometric calculations. Additionally,
for the simulation of the REMs the OSM map is also converted
into a 3D environment usable by the Altair WinProp© ray-
tracing simulation software. The next step is to identify possi-
ble antenna positions. For this, our framework uses centroids
of buildings with pre-configured minimum height of 5m.

Now, the REMs can be calculated based on the identified an-
tenna positions. The network planning framework provides an
interface for integrating different methods for calculating the
REMs. In this case, an interface to the Altair WinProp© ray-
tracing simulation software was developed and utilized. Table
I provides an overview of the parameters passed on to the
ray-tracing software. The specific frequency of 3.75GHz is
chosen based on the newly available private mobile network
frequency band in Germany (and, in the future, possibly in
other parts of the European Union).

After all REMs for every antenna position and configu-
ration are calculated the results which consist of received
powers in dBm within the defined polygon are converted
to the internal scenario representation based on geopandas.
These results are then further pre-filtered according to user-
defined specifications, such as regulatory aspects, in order to
exclude invalid solutions in advance. This ensures that the ML
converges faster. In this case, the received power at the private
network boundaries must not be higher than −80 dBm which
approx. corresponds to the regulation imposed by the German
Federal Network Agency (Bundesnetzagentur). After all the
pre-processing and pre-calculation of REMs is completed

2© OpenStreetMap contributors (https://www.openstreetmap.org/copyright)
3geopandas 0.9.0

and invalid results are filtered, the clustering-based antenna
placement is initiated.

From this point on, all results are cached and available
for later antenna placement evaluations without repeating the
previous steps. This is particularly interesting in light of the
fact that spatial prioritization can be performed within the
private 5G network. This enables very fast reconfiguration of
antenna positions, for example to plan temporary events such
as Formula 1 races within the existing private 5G network,
without having to recalculate REMs.

Before applying the clustering method the result space is
transformed based on the minimum received power specified
by the user which is −90 dBm in this case. Every REM is con-
sequentially transformed into one polygon each containing all
parts of the map which indicate a received power ≥−90 dBm.
In Fig. 2 (and also in Fig. 5), the boundaries of these polygons
are indicated as overlapping ”puzzle pieces”. In the same
figure, the red dots indicate the centroids of these polygons
which represent the results space of the clustering method. In
this work, K-means [12] was chosen as the clustering method.
Other (density-based) clustering methods like DBSCAN and
OPTICS were also tested, but found to be unsuitable for this
application (due to the non-configurability of the cluster size).

After the clustering method is trained and each centroid
is assigned to a cluster, the polygon that forms the maximum
area together with the polygons of other clusters is selected for
each cluster. Then, base stations or antennas corresponding to
these polygons are chosen for deployment, with the maximum
output power possible. Since invalid solutions are already pre-
filtered, this results in the network with the highest signal
quality possible using omnidirectional antennas and the given
regulatory aspects. Thus, the maximum coverage with the
target power is achieved without having to consider all possible
solutions, speeding up the process significantly. In the next
section, an exemplary network planning scenario is described
on the basis of which the framework was evaluated.

IV. EVALUATION

Varying spatial priorities within a private 5G network in Monaco

Overall  
Private 5G 
Network
City Area

Temp.
Event

Formula 1
Racing

Temp.
Event
Sailing
Regatta

Fig. 3. Evaluation scenario comprising a residential portion of Monaco, which
represents the overall private 5G network. In addition, two temporary events
an F1 track through Monte Carlo and a Sailing Event area at Port Hercule.
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(b) Formula 1 - Base stations: 3, Coverage: 97.59%
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(c) Sailing - Base stations: 2, Coverage: 94.74%

Fig. 4. Example results of the automated network planning with at approx. 95% coverage ratio based on the K-means algorithm and a coverage goal of
−90dBm within the spatially prioritized boundaries (red line), using omnidirectional antennas (purple dots) and avoiding received powers outside of the
boundaries exceeding −80dBm.

The evaluation of the automated network planning frame-
work is based on the comparison of three different scenarios
within a single overall private 5G network. For this, a part
of the city-state of Monaco was chosen, which is presented
in Fig. 3. The first simulated scenario is represented by the
green area, which depicts the overall private 5G network in
a residential area comprising Monte Carlo and Port Hercule.
Thus, large-scale network planning is carried out first, which
is based on macro network planning. Within the area two
different temporary events are held, a Formula 1 (F1) race
(red area) through Monte Carlo and a sailing regatta (blue
area) at Port Hercule. The goal is to show that when a given
overall private 5G network is planned and thus REMs are pre-
calculated, the network planning of temporary events within
the area can be rapidly calculated by our proposed network
planning framework based on spatial prioritization. Identified
antenna positions are marked by teal colored points in Fig. 5a.

(a) (b) (c)

Fig. 5. Overview of the Monaco scenario comprising of possible base station
locations on building centroids (a), the corresponding results space after
REM simulations (b) as well as an example clustering solution for 3 clusters
using the K-means clustering method (c). The solution space is comprised of
polygons which represent locations with the required signal quality. The red
dots depict the centroids of those polygons, which are subsequently used to
cluster the possible base station locations.

After calculating all REMs based on these antenna positions
and filtering invalid solutions the results space is transformed
for the clustering method according to Sec. III. In Fig. 5b,
the black lines and the red dots indicate the resulting polygon
borders and centroids, respectively. After the scenario is pre-
processed and prepared, the K-means algorithm is applied to
the resulting polygon centroids using the default parameters4.
The number of clusters is incrementally increased from 1-
8 and corresponds directly to the number of base stations.
An example clustering result for the K-means method is
depicted in Fig. 5c for cluster size 3, where the different colors
distinguish the clusters. It is shown that there is a reasonable
spatial distribution of the clusters.

In Fig. 4, exemplary network planning results and their
corresponding REMs are depicted from left to right for the
overall city, the F1 racing and sailing regatta temporary
events. Here, the REMs are depicted as heat maps to display
the received power within the private 5G network and its
surroundings in dBm. For all three scenarios, a solution with
a coverage of approx. 95% is presented. This corresponds
to a cluster amount of 7, 3 and 2 for the city, F1, and
sailing scenarios, respectively. It can be seen that the spatial
distribution of base stations through the clustering approach
seems reasonable and provides a realistic and expected result
for all three scenarios, taking into account the regulatory
constraints. Furthermore, a more detailed comparison can be
conducted looking at Fig. 6. There, the coverage ratio of the set
target of −90 dBm within the given prioritized area is plotted
as a function of the number of clusters, which here directly
represents the number of base stations. It can be seen that the
sailing scenario can already be covered very well with a small
number of base stations. The F1 scenario is, due to the more
complex shape of the prioritized area polygon, at a saturated

4scikit-learn 0.24.1



coverage of 94.74% starting with 3 deployed base stations.
On the contrary, the city scenario which requires a macro-
network oriented planning due to the larger area to be covered,
provides a more differentiated picture. Here, it becomes clear
that a cost-benefit analysis must be carried out, since, for
example, 95% coverage can only be achieved starting with
7 base stations. Accordingly, it may be worthwhile to forego
the last percent coverage in favor of the costs.

While the sailing area is easily 
covered, the overall city area 
needs at least 7 base stations 

to get similar performance

The coverage of the F1 
scenario is saturated 

at 3 base stations

Fig. 6. Relation between K-means cluster size (also here: amount of base
stations) and coverage ratio. While the sailing and F1 scenarios can already
be covered very well with a small number of base stations, the city scenario
requires a large number of base stations to achieve the same high coverage.

One-time simulation 
duration, up to 48h 

dependent on model detail
Pre-calculated REMs 
enable rapid network 
planning for temporary 

purposes in minutes

Radio Environmental Map (REM) calculations

Fig. 7. Relation between K-means cluster size (also here: amount of base
stations) and time for calculation. Note that the simulation duration of the
REM calculations are one-time only. After pre-calculation of REMs, rapid
network planning for temporary purposes is enabled in minutes for the
different events.

In Fig. 7, the relation between the cluster size and the
time for calculation5 in minutes is depicted on the x- and y-
axis, respectively. Here, the dashed line at the top shows the
duration of the REM calculations (here: 139min, dependent
on model detail up to 48 h), which is performed only once
and can be used for all network planning runs thereafter. The
network planning calculation times for scenarios are shown
with the solid lines depending on the number of clusters. It

5Hardware and operating system used: Intel Core i7-7700 3.60 GHz (4
Cores, 8 Threads), 16 GB RAM, Windows 10

can be seen that the planning of temporary events within a
private 5G network can be performed within a few minutes,
which is one major strength of this framework.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a clustering-based approach
for automated network planning. While automated network
planning concepts already exist, these are often limited by
the environment model, which is based on traditional channel
models. In contrast, we present a solution easily able to
integrate complex (3D ray-tracing) network simulations or
even HIL concepts. In conclusion, reasonable as well as
optimal results can be acquired with this automated network
planning system, able to deal with a target network planning
solution while being confronted with restrictions, including
those imposed by frequency usage terms or the owner of
the premises (e.g., no-go-areas). The network planning of
temporary deployments inside the premises can be determined
within minutes after calculating the REMs. Premise owners,
e.g., industrial companies, with plans to operate a private 5G
network can thus be effectively supported by our system in
terms of network planning, an expertise that is not present
in most enterprises. In this context, the K-means algorithm
provides the best parameter set for network planning, while
providing reasonable results. For future work, we plan to
extend the automated network planning framework. Further-
more, different antenna types will be supported, e.g., sector
or beamforming antennas. The optimal alignment of sectors
or beams can be established by including other ML concepts,
such as Reinforcement Learning (RL). Additionally, capacity
planning will be incorporated, which also integrates network
slicing dimensioning. Also, the integration of indoor network
planning is aspired, which brings its own specific challenges.
In order to further validate this concept, a newly developed
ML-based radio field simulation [11] and own 2D-based ray-
tracing concepts will be included.
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