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Abstract—Multiple service types such as Ultra-Reliable Low
Latency Communication (uRLLC) and Enhanced Mobile Broad-
band (eMBB) are envisioned to be incorporated into the next
generation mobile communication standard 5G based on a single
physical communication network. To unite these services with
partly contradicting Quality of Service (QoS) requirements,
Network Slicing is considered a key technology. uRLLC slices in
particular are highly demanding, requiring extremely high relia-
bility and low latency in the single-digit milliseconds range. Con-
sequentially, the latency impact of radio resource management
on the end-to-end latency is optimized in this work by using so-
called Configured Grants (CGs), which aim to minimize latency-
intensive scheduling requests by pre-allocating radio resources.
As predicting future traffic demands and channel conditions
are required to use CGs, a data-driven machine learning-based
radio resource scheduler prototype is introduced and evaluated
in this work based on a specifically developed 5G radio resource
simulator. The results show promising latency optimizations and
possible trade-offs in uRLLC and eMBB coexistence.

I. INTRODUCTION

The 5th Generation of Mobile Communication Networks
(5G) progresses towards incorporating various service types
with partly contradicting Quality of Service (QoS) require-
ments into a single mobile communication network, aiming
for heterogeneity regarding supported services and Key Per-
formance Indicators (KPIs). In fig. 1 right, the three envisioned
main service types and their requirements are shown, which
are defined as specifications of different KPIs [1]:
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Fig. 1. Network Slicing as key enabler to fulfill all specific service require-
ments simultaneously [1]

• Enhanced Mobile Broadband (eMBB)
• Ultra-Reliable Low Latency Communication (uRLLC)
• Massive Machine Type Communication (mMTC)
Integrating these different service types into a single physi-

cal communication network is a great challenge. One promis-
ing key technology is the Network Slicing, where different

virtual networks, so-called slices, are utilized on top of a
common physical communication network (see fig. 1 left).
Several empirical studies on Network Slicing were conducted
by the authors based on Long Term Evolution (LTE), where
the data rate provisioning was successful based on schedulers
developed on top of Software-Defined Radio (SDR) systems
[2] [3]. However, end-to-end latency requirements of uRLLC
were not possible to implement due to technical limitations
of LTE. For this reason, the main focus of this work is
to minimize end-to-end latency in 5G networks. End-to-end
latency in cellular networks and 5G specifically comprises of
different latency-inducing components.
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Fig. 2. Latency-inducing components of transmission in cellular networks [4]

Following components can be derived from [4] (c.f. fig. 2
from right to left):

• TTransport: Latency induced by the transport network,
e.g., when requesting data from or uploading data to the
Internet.

• TCore: The core network present in most cellular net-
works introduces some latency while processing and
forwarding data from and between the mobile and wired
network.

• TFront−/Backhaul: The connection between gNodeB (5G
base station) and core network also induces further delay.

• TRadio: This is where the physical channel characteristics,
e.g., distance from User Equipment (UE) to gNodeB,
as well as Radio Resource Management (RRM) add
transmission latency.

The focus of this work is to minimize TRadio, in particular
that of RRM as a major part in implementing QoS in Network
Slices. Specifically, the process of scheduling requests and
granting them can be eliminated using the so-called Config-
ured Grant (CG) scheduling, which is planned to be integrated
into 5G [5]. CG scheduling allows the definition of fixed
resource allocations in the future, thus eliminating the need for
latency-inducing scheduling operations. However, this concept
has one major challenge: Future data demands and channel
qualities have to be predicted to allocate the exact amount
of Resource Blocks (RBs) needed in each slice. This again
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imposes a major challenge: If the prediction of required RBs
is too low, mission-critical data in the uRLLC slice has to
be scheduled again, highly increasing its end-to-end latency.
A possible solution would be to over-provision the amount
of RBs, which then results in wasting of resources for the
other slices, effectively decreasing spectral efficiency. In this
work, our Slice-Aware Machine Learning-based Ultra-Reliable
Scheduling (SAMUS) system is introduced, which is an RRM
scheduler prototype using CGs. SAMUS utilizes data-driven
concepts to predict future traffic demands and thus optimizes
the trade-off between latency in uRLLC and data rate in eMBB
slices. For this, a specifically implemented 5G-based radio
resource simulator is used to evaluate the performance of the
scheduler prototype regarding different trade-off strategies.

The remainder of this work is structured as follows: In
section II, a general overview of related works regarding
data-driven Network Slicing concepts is given. Details of the
developed simulation framework as well as a description of
the data-driven scheduler prototype is presented in section III,
which is rounded up by its evaluation in section IV. Finally,
section V presents a conclusion and evaluates possible future
work based on our concepts.

II. RELATED WORK

Several related works exist regarding Machine Learning
(ML)-based or data-driven Network Slicing, minimizing la-
tencies in 5G, and predicting future traffic demands. In [6],
Network Slicing applications, scenarios, and tasks are given,
where utilization of automation with data-driven concepts
appears to be a promising solution. The work of Calabrese
et al. [7] concentrates on handovers between base stations
for changing channel qualities and provides an overview of
different ML concepts. Both surveys focus on an efficient
RRM, which is dependent on reliable scheduling operations
by the base station. Bag et al. [8] study the impact of
multi-numerology and shortened Transmission Time Intervals
(TTIs), which were introduced with the 5G standard, on the
scheduling latencies. The utilization of CGs in this context
is analyzed in [5], where detection schemes are introduced
to provide reliability for CG transmissions by minimizing
collisions for resources reserved for multiple UEs at the same
time. As for the predictive aspect of the scheduler, time
series prediction was evaluated in [9] for Internet of Things
(IoT) applications, where the findings for historical data favor
the auto-regression based Auto-Regressive Integrated Moving
Average (ARIMA) model.
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Fig. 3. Overview of the system comprising inputs, outputs, and modules

III. METHODS

In the following subsections, the overall developed sys-
tem comprising the 5G Resource Grid Simulation (5G-RGS)
framework and the RRM scheduler prototype SAMUS is
described. For this, fig. 3 presents an overview of all inputs,
outputs, and modules contained in the system.

A. 5G Resource Grid Simulation (5G-RGS) Framework

In the 5G-RGS framework, a resource grid is modeled as
a matrix based on the 5G specifications. As presented in
fig. 3, the channel conditions of each UE serve as an input
to the 5G-RGS, which combined with other parameters such
as modulation order, TTI, as well as the allocated RBs, yields
the Transport Block Size (TBS). The TBS is the key element
in calculating the resulting data rate of each slice, which is
conducted as follows [3] [10]:

Data Rate (Mbps) = 10−6 ·
NUE∑

n=1

(TBS(n)

TTI
·NTTI) (1)

where NUE is the amount of UEs within the slice, TBS(n)

is the TBS allocated for the n-th UE in bit, and NTTI is the
amount of TTIs in a second. One TTI has a duration of 1ms
in this work, based on default New Radio (NR) specification.

Moreover, the latency of each transmitted packet is calcu-
lated as follows (media access control layer only):

Latency (ms) = (IS − IC) · TTI (2)

where IC is the scheduling interval the packet was created
and IS is the scheduling interval where the last bit of the
packet is transmitted in an RB (thus, packets can be split up
into multiple RBs).

Retransmissions, e.g., due to packet errors occurred in the
radio channel or in the core network, or delays regarding the
physical transmission over the air, are neglected. Thus, only
RRM scheduler performance is evaluated. The framework was
validated successfully recreating scenarios from [3].

B. Slice-Aware Machine Learning-based Ultra-Reliable
Scheduling (SAMUS)
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Fig. 4. Interactions and overview of modules within the simulation and
development framework



As already mentioned in section I, the Slice-Aware Machine
Learning-based Ultra-Reliable Scheduling (SAMUS) system is
a scheduler prototype utilizing data-driven methods to allocate
Configured Grants (CGs). Based on real systems, channel
conditions or Channel Quality Indicators (CQIs), as well as
emerging data amounts of each UE, also called Buffer Status
Reports (BSRs), serve as input for the SAMUS system (see
fig. 3). Apart from its capability to process traditional Schedul-
ing Requests (SRs), which are latency-intensive, historical data
is used by SAMUS to generate CGs in order to reduce the
scheduling latency to zero, in the best case. This is done via
prediction of traffic and CQI data, which is detailed in fig. 4.
For this, the ARIMA method was utilized, which is shown to
be successfully predicting time-series in [9]. Both the traffic
and CQI data are used to allocate CGs in the future, as both
essentially determine the amount of RBs needed for each slice
or UE. For this, the scheduler first allocates the resources of the
mission-critical slices based on the prediction of the ARIMA
model, finally granting the remaining RBs to best effort slices
(without QoS). This method is based on the Greedy Network
Slicing scheduler in [3]. If a packet cannot be transmitted due
to wrong prediction of data amounts or channel conditions
(or when CGs are disabled), the traditional way of granting
resources via SRs is used. After creating a CG for the current
TTI, the scheduling module passes a resource grid as a matrix
to the 5G-RGS, which in turn calculates the resulting data rate
and delays for each slice and saves them in a statistics file for
later processing. After that, the CQIs and BSR are updated
and the cycle repeats.
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Fig. 5. Training and operation flow chart of SAMUS’s prediction module
using ARIMA model

As for the training and operation of the ARIMA-based
prediction module, fig. 5 gives a detailed overview as a flow
chart. First, the underlying data set, e.g., channel qualities
and data amounts of an Electric Vehicle (EV) charging slice
over a day, is split up into 2

3 training data and 1
3 validation

data. Then, the training data set is used to train the ARIMA
model to the extent that is required to predict future data
(offline learning). This predicted future data is then used by
the scheduler to allocate CGs, resulting in a predicted data
rate required. Parallel to this, the actual data rate is calculated
using the validation data set as a basis for packet generation
within the UE objects. Additionally, the prediction module also
adjusts its predictions based on the new data acquired during
the simulation (online learning).

These methods were evaluated using real data sets for
different types of slices simultaneously, while best effort

TABLE I
OVERVIEW OVER THE DIFFERENT MODES AND THEIR RESPECTIVE

SETTINGS USED IN THE EVALUATION OF THE FRAMEWORK

Channel Bandwidth 20 MHz

5G Subcarrier Spacing 15 kHz

Channel Quality Fixed Modulation and Coding Scheme (MCS) of 15

5G MCS Index Table 64QAM

SR Occasion every 4 ms

Packet TTI 1 ms

Simulated Time 1 h

General Settings

Smart Grid (uRLLC) Electric Vehicle Charging (uRLLC) Best Effort (eMBB)

5 UEs 4 UEs 2 UEs

variable 

aggregated throughput
variable aggregated throughput

18.96 Mbps 

aggregated throughput

Slice-Specific Settings

Mode 1 Mode 2.1 Mode 2.2 Mode 3.1 Mode 3.2

No Configured Grants (CG)
Fixed CGs

(optimistic)

Fixed CGs

(pessimistic)
Predicted CGs Predicted CGs

No Overprovisioning (OP) No OP No OP No OP 10% OP

Mode-Specific Settings

users demand all resources. The results are presented in the
following section IV.

IV. EVALUATION

The methods described in section III were evaluated using
different simulation settings and scenarios. First, underlying
evaluation parameters and scenarios are introduced in section
IV-A. Finally, the simulation results and their analyses are
presented in section IV-B.

A. Simulation Scenarios and Parameters

To evaluate the SAMUS system, the following simulation
parameters, called modes, were developed (cf. table I bottom):

• Mode 1: With traditional SRs → without CGs.
• Mode 2: With fixed CGs

– Mode 2.1: Optimistic approach→ fixed grants based
on the historical average data rate of the slice

– Mode 2.2: Pessimistic approach→ fixed grants based
on the historical maximum data rate of the slice

• Mode 3: With ARIMA-based predicted CGs
– Mode 3.1: Without over-provisioning → grant re-

sources as predicted
– Mode 3.2: With over-provisioning → grant 10%

more resources than predicted
These modes represent different trade-off strategies balanc-

ing low latency in the uRLLC slices with high data rates
in eMBB slices. Moreover, table I top presents all 5G radio
and RRM-related settings, which are based on the average
of real LTE or 5G macro-cell settings. To focus on data
traffic trade-off strategies, modes 1− 3.2 are simulated with a
fixed channel quality represented by a Modulation and Coding
Scheme (MCS) of 15. Channel quality prediction was also
analyzed but is not presented in this work. Finally, slice-
specific configurations are listed in the middle area of table



I. There, three slices are defined, which are also presented in
fig. 6 and detailed in the following:

• Smart Grid (SG) slice (uRLLC): Data traffic in this
slice is modeled after photovoltaic systems transmitting
data proportionally to solar activity data obtained from
National Renewable Energy Laboratory (NREL)1

• Electric Vehicle (EV) Charging slice (uRLLC): EV charg-
ing point communication was modeled based on occu-
pancy data gathered from chargecloud for the German
city of Bonn2

• Best Effort (BE) slice (eMBB): UEs and other high data
rate devices are modeled in this slice as sending data with
a constant rate of 18.96Mbps, which represents the rest
of the available data rate of the cell
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Fig. 6. Network Slicing scenario used in the evaluation of the framework

Based on these simulation parameters, modes, and scenar-
ios, extensive evaluations were performed and are presented
in the following section.

B. Evaluation Results

The simulation scenarios presented in section IV-A were
performed using the 5G-RGS framework to analyze the dif-
ferent trade-off strategies between channel utilization (eMBB
slice) and latency minimization (uRLLC slice). For this, the
aforementioned modes of the SAMUS system were evaluated.
Note that a channel quality prediction is not included here and
a static medium coverage is assumed. This assumption can
be realistic for, e.g., smart grid slices, which often consist of
stationary devices and thus, do not underlie sudden changes in
MCS. In first evaluations however, channel quality prediction
was also performed using the SAMUS system based on
ARIMA, utilizing measured CQI data of moving vehicles.
These evaluations showed equally promising results as the data
rate prediction presented here. Further extensive research will
be performed and presented in future works.

Based on the data sources described in the previous section,
a 60min timeframe was analyzed in all slices and modes,
according to table I. The 60min timeframe represents an
interval with high volatility (EV charging: rush hour with
many vehicles, SG: sunrise time with rapid change in solar
activity). The results for mode 1 are presented in fig. 7. On
the y-axis, the average data rate of each slice is depicted in
Mbps, while simulated time is represented in min on the x-
axis. The lines depict different average data rate progressions.

1https://www.nrel.gov/grid/solar-power-data.html
2https://new-poi.chargecloud.de/bonn (January 2020)

The continuous red line serves as an indicator of the channel
bandwidth utilization, i.e., the sum of all slice data rates, while
the dotted red line shows the maximum possible data rate of
the specific cell configuration. The black line represents the
average data rate of the Best Effort (eMBB) slice, while the
green and blue lines show the mission-critical Smart Grid and
EV charging uRLLC slices, respectively (cf. fig. 6).

As for the results, the behavior of the system with no
CGs is similar to the Greedy Network Slicing algorithm
presented in [3]. Based on the traditional scheduling request
and grant mechanism, both mission-critical slices SG and
EV charging receive all requested resources as soon as they
are requested, which depicts the expected behavior. The low
channel bandwidth utilization at the beginning is due to the
slow increase of SG slice data rate at the start. Similarly, the
BE data rate peak at about 54min is due to packets being
queued, until the channel allows for a higher data rate. As
mission-critical slices demand higher data rates, resources of
the BE slice are reduced due to being a non-critical slice.
Looking at the channel bandwidth utilization (red line), the
sum of actual resulting data rate is very close to the theoretical
maximum. However, this data rate efficiency has a strong
negative impact on overall uRLLC latency, as can be seen
in fig. 9. There, the ratio between average received data rate
from actual requested data rate in the BE slice is depicted
on the left-hand y-axis (gray bar plot). The second y-axis
on the right-hand side shows the mean scheduling latency
resulting in the critical slices (green: SG slice, blue: EV
charging slice, black lines: standard deviation). The indicated
arrows and values depict the remaining margins for the other
end-to-end latency components for both critical slices in their
respective colors (cf. fig. 2). On the x-axis, the different modes
of the SAMUS system are lined up for a detailed comparison.
Focusing on the results of mode 1, 92.74% of the requested
data rate can be granted for the BE slice, which corresponds
with the high bandwidth utilization mentioned regarding fig. 7.
This is due to the traditional scheduling request and grant
mechanisms used in all slices including the mission-critical
ones, exactly requesting the required data rate as needed,
which means no resources are wasted. However, this also

Data rate is reduced, to fulfill

critical slices requirements

Actual transmitted bits within

channel for all UEs (Indicator

for spectral efficiency)

Very high channel utilization, 

but traditional lengthy

scheduling process

Fig. 7. The progression of data rates for the different network slices in mode 1
(5G parameters only)



Resources not sufficient:
Scheduling delay increases

Resources sufficient, but too many

unused: Scheduling delay is zero, but 
some resources are wasted

(a) Mode 2.1: Fixed Configured Grants with optimistic approach

Very high resource wastage, 
but also very low latency

Fixed Configured Grants still failing

when data rate is too dynamic

Very low channel utilization

(b) Mode 2.2: Fixed Configured Grants with pessimistic approach

Configured Grants data-driven
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Some predictions are

optimizable

(c) Mode 3.1: Predicted Configured Grants without Over-Provisioning

Over-provisioning
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(d) Mode 3.2: Predicted Configured Grants with 10% Over-Provisioning

Fig. 8. The progression of data rates for the different slices and modes 2.1-3.2 in comparison. The 60min timeframe represents an interval with high
volatility (EV charging: rush hour with many vehicles, SG: sunrise time with rapid change in solar activity)

means that this lengthy request and grant sequence leads
to comparatively high (scheduling) latency for the uRLLC
slices. Although the hardest 3rd Generation Partnership Project
(3GPP) requirement of 5ms for 5G [11] can be met, little to
no margin for the other latency-inducing components (cf. fig.
2) is left (EV: 1.53ms, SG: 2.47ms).

In modes 2.1 and 2.2, fixed CGs with optimistic and
pessimistic approach are utilized and are depicted in fig. 8a and
8b, respectively. In the optimistic variant, most of the packets
transmitted in the mission-critical slices are still processed
with traditional request and grant scheduling, as the fixed
CGs are based on the historical average data rate observed
in each mission-critical slice and thus, mostly lower than the
required resources. As can be seen in fig. 9, this results in
a comparatively high data rate utilization of 83.93%. Also
latency in both mission-critical slices is approximately halved
in comparison to mode 1. Additionally, the EV charging
and SG slice mean scheduling latency is now lower than
1ms, leaving 4.04ms and 4.58ms margin for other end-to-
end latency components, respectively. This is even further
improved in mode 2.2, where the SG slice scheduling latency
even drops down to zero, which enables the max. possible
margin of 5ms for the other latency-inducing components of
the communication network. However, this comes with a cost:

BE slice resource grant ratio drops down to 52.22%, which
means that almost half of the cell’s resources are wasted.

In fig. 8c and 8d, the data-driven ARIMA-based approach
is depicted, without and with 10% over-provisioning, respec-
tively. The dotted lines represent the predicted data rate for
each slice by the SAMUS system in the respective colors.
Considering that resource allocation is now more dynamic,
higher scheduling latency occurs within the critical slices (cf.
fig. 9) compared to mode 2.2. However, far better trade-offs
can be made with this data-driven approach. Until now, mode
2.2 led to the best latency result, but with high resource
wastage of approx. 50%. In mode 3.1, nearly the same
and even better latency margins of ∼5ms can be achieved
for both slices, while still providing 79.22% of requested
resources for the BE slice, which is comparable to mode
2.1. Finally, Over-provisioning of predicted resources leads
to lower mean scheduling latency within the EV slice, trading
9% of resources with 4.95ms margin.

V. CONCLUSION AND OUTLOOK

In this work, we presented the scheduling prototype of
the SAMUS system, evaluated on a specifically developed
5G-RGS framework. For this, a realistic Network Slicing
scenario based on real-world data was utilized, where different
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Fig. 9. Average best effort data rates versus mean and standard deviation of
mission-critical slice latencies (averaging window: 2 s according to [11]) in
comparison for different conducted modes. The arrows indicate margins for
remaining end-to-end latency components (cf. fig 2).

modes of operation were analyzed. In conclusion, the data-
driven ARIMA-based approach of SAMUS enables the best
trade-off between high data rates in eMBB slices and low la-
tency in mission-critical uRLLC slices, while still maintaining
comparatively high channel bandwidth utilization. However, if
the mission-critical slices are required to have the absolutely
minimal latency, fixed Configured Grants (CGs) have to be
utilized, accepting the high waste of resources coming along
with it. This work gives an insight into different models of
Network Slicing operation, where in public networks, the
interests of end users and critical infrastructure safety have
to be staked out against each other (so-called mixed-critical
operation). In conclusion, Service Level Agreements (SLAs),
which include traditional Key Performance Indicators (KPIs)
such as packet rates and latency, need to incorporate the
predictability of these KPIs as a new factor in 5G networks.

Extensive future work can be conducted based on the
SAMUS system. For example, the SG slice latency shown in
this work can be improved in future work by not solely relying
on ARIMA. One approach could be to introduce fixed CGs at

the start of the transmission, which is absolutely predictable
as solar activity begins with pre-calculable sunrise times. As
previously mentioned, the prediction of channel quality has to
be included and evaluated. In this context, network planning
methods incorporating the network slice planning could be
developed, thus avoiding constraints imposed by low MCSs.
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