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ABSTRACT
In this work, we present Black Spot-aware Contextual Bandit (BS-CB)
as a novel client-based method for resource-efficient opportunistic
transmission of delay-tolerant vehicular sensor data. BS-CB applies
a hybrid approachwhich brings together all major machine learning
disciplines – supervised, unsupervised, and reinforcement learning
– in order to autonomously schedule vehicular sensor data trans-
missions with respect to the expected resource efficiency. Within
a comprehensive real world performance evaluation in the pub-
lic cellular networks of three Mobile Network Operators (MNOs),
it is found that 1) The average uplink data rate is improved by
125%-195% 2) The apparently selfish goal of data rate optimization
reduces the amount of occupied cell resources by 84%-89% 3) The
average transmission-related power consumption can be reduced
by 53%-75% 4) The price to pay is an additional buffering delay due
to the opportunistic medium access strategy.

CCS CONCEPTS
• Networks� Network resources allocation; Network performance
modeling; Network measurement; Mobile networks; • Computing
methodologies�Mobile agents;Machine learning; Reinforcement
learning; Classification and regression trees;
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1 INTRODUCTION
Vehicular crowdsensing [22] is an emerging data acquisition para-
digm which utilizes the various sensing and communication capa-
bilities of modern vehicles and exploits their mobility for achieving
dynamic sensor coverage of large regions. While it is expected
that vehicular big data will stimulate the development of a mul-
titude of novel data-driven services [23], the increase in massive
Machine-type Communication (mMTC) represents a massive chal-
lenge for the cellular network where different users compete among
the available cell resources. An important observation which mo-
tivated our work is the high variance of the resource efficiency
of data transmissions along the vehicular trajectories. On the one
hand, vehicles encounter periods of high network quality – also
referred to as connectivity hotspots – where data transmissions are
performed highly resource efficiently. On the other hand, they are
also subject to low channel quality periods and encounter network
congestion. Here, the mobile User Equipment (UE) applies a low
Modulation and Coding Scheme (MCS) in order to avoid packet
errors and retransmissions. Moreover, also the power consumption
is often highly increased as the mobile UE needs to apply a high
transmission power to compensate challenging path loss situations.
Since conventional data transfer methods access the radio medium
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Figure 1: Overview about Applications, Challenges, and So-
lution Approaches For Vehicular Crowdsensing
periodically – without considering the channel conditions – a large
amount of resources is spend on improving the reliability of the
data transfer.

Non-cellular-centric networking is an emerging research field
where client devices become part of the network fabric and par-
ticipate explicitly or implicitly in network management functions
[7]. Client-based opportunistic data transfer for delay-tolerant appli-
cations schedule vehicular sensor data transmissions with respect
to the expected resource efficiency: Acquired data is buffered lo-
cally until the mobility-dependent channel quality is considered
sufficient. Due to the buffering-related delaying of the data transfer,
this approach cannot be applied for safety-criticial data such as
cooperate awareness messaging. However, since many vehicle-as-
a-sensor applications – such as updates of High Definition (HD)
environmental maps and traffic measurements – allow soft Age
of Information (AoI) deadlines, opportunistic medium access is a
promising candidate for utilizing the existing network resources in
a more efficient way. Fig. 1 summarizes the applications, challenges,
and solution approaches for vehicular crowdsensing in cellular
networks.

In this work, we present a novel client-based opportunistic data
transmission scheme that relies on a combination of multiple learn-
ing models. The contributions are summarized as follows:
• BS-CB is a novel hybrid machine learning-enabled trans-
mission scheme for resource efficient transfer of vehicular
sensor data.
• Black spot-aware networking: Exploitation of knowledge
about the geospatially-dependent uncertainties of the pre-
diction model.
• Real world performance evaluation and comparison of the
novel approach to existing methods

The remainder of the paper is structured as follows. After dis-
cussing the related work in Sec. 2, we present the proposed BS-CB
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in Sec. 3. Afterwards, an overview about the methodological aspects
is given in Sec. 4. Finally, detailed results of real world experiments
and data-driven simulations are provided in Sec. 5.

2 RELATEDWORK
Anticipatory networking [6] is a novel communications para-
digm which aims to optimize decision processes within mobile
communication systems through proactive consideration of con-
text information. Due to the inherent interdependency of mobility
and radio propagation dynamics, highly mobile systems such as
vehicular networks are expected to benefit significantly from this
form of network optimization. As pointed out by a recent report of
the 5G Automotive Association (5GAA) [2], predictive Quality of
Service (QoS) along the vehicular trajectories will a key enabler for
future connected and automated driving.

Machine learning allows to expose hidden interdependencies
between measurable variables and represents a key enabler for
anticipatory networking. Machine learning models can be charac-
terized into three major categories: Supervised learning techniques
train a model 𝑓 on a training data set X with labeled data Y such
that 𝑓 : X→ Y. Afterwards, the trained model can be utilized to
make predictions on unlabeled data sets. Unsupervised learning is
applied to detect patterns in unlabeled data sets. This allows to
cluster data points with similar characteristics, e.g., through appli-
cation of the popular k-means [4] method. Reinforcement learning
is an important step towards zero touch optimization of wireless
communication systems. Hereby, agents learn autonomous deci-
sion making by performing actions within an environment through
observation of the resulting rewards.

A detailed summary about models and applications related to
research questions in the wireless communication domain is given
by the authors of [21]. Within the emerging 5G networks, the
integration of machine learning methods mainly focuses on the
network infrastructure side. Manifestations of this development
can be seen in the Network Data Analytics Function (NWDAF)
[1] for network load assessment (e.g., for dynamic slicing) and in
the architectural framework defined by the International Telecom-
munication Union (ITU) [12] for utilizing machine learning-based
network management. It is expected that the trend of replacing
mathematical models by machine learning functions will continue
further and ultimately lead to pervasive machine learning in future
networks such as 6G [3].

Different research works (e.g., [10, 19]) have analyzed client-
based data rate prediction for mobile networks based on network
indicator measurements. An important observation is that Classifi-
cation and Regression Tree (CART)-based methods such as Random
Forests (RFs) [5] often achieve a better prediction accuracy than
more complex methods such as deep learning which require a sig-
nificantly higher amount of training data in order to overcome the
curse of dimensionality [24].

The advancements in machine learning-enabled networking
have also catalyzed the emergence of novel performance analysis
methods that focus on end-to-end modeling of wireless commu-
nication systems. In this work, we apply a corresponding setup
for training and parameterizing the reinforcement learning-based
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Figure 2: Overall System Architecture Model

transmission scheme (see Sec. 4): Data-driven Network Simula-
tion (DDNS) [18] is a novel machine learning-enabled simulation
method which provides fast and accurate modeling of end-to-end
performance indicators in concrete evaluation scenarios by replay-
ing empirical context traces. Hereby, multiple prediction models
are applied jointly in order to learn the end-to-end behavior of a
target performance indicator as well as the statistical derivations
between prediction model and ground truth measurements.

3 PROPOSED HYBRID MACHINE LEARNING
APPROACH

The overall system architecture model of the proposed solution
approach is shown in Fig. 2. Instead of using a multi-dimensional
feature vector of raw context measurements for the autonomous
decision making, we use an intermediate supervised learning step
to forecast the currently achievable data rate in order to reduce
the dimensionality of the learning problem. Moreover, knowledge
about the geospatial dependency of the prediction errors is utilized
to improve the opportunistic data transfer process. In the following,
the different modules are explained in further details.

3.1 Supervised Learning for Data Rate
Prediction

The overall feature set x is composed of measurements from differ-
ent context domains
• Network features xnet: Reference Signal Received Power
(RSRP), Reference Signal Received Quality (RSRQ), Signal-
to-interference-plus-noise Ratio (SINR), Channel Quality In-
dicator (CQI), Timing Advance (TA) and carrier frequency
• Mobility features xmob: Speed of the vehicle and cell id of
the connected evolved Node B (eNB)
• Application features xapp: Payload size of the data packet
to be transmitted

Due to the findings of the in-depth comparison of different data
rate prediction models in [18], we apply a RF model for predicting
the currently achievable data rate as 𝑆 = 𝑓RF (x).
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3.2 Unsupervised Learning for Black Spot
Clustering

In previous work [20], we have pointed out that the achievable accu-
racy of prediction models has a geospatial dependency: Artifacts in
the observed prediction performance often occur cluster-wise and
are mostly related to effects which are not covered by the feature
set (e.g., handovers, short term link loss). Although this knowledge
does not allow us to compensate the undesired effects, it can be
utilized as a measurement of trust into the prediction model in or-
der to strengthen the robustness of the context-aware data transfer.
With respect to its usage in traffic safety, where the term black spot
corresponds to a geographical region with an increased probability
for collisions, we migrate its usage to the wireless communications
domain and use it as a description for geographical regions with
exceptional high prediction uncertainty.

The black spot-aware approach is divided into two phases:
Offline data analysis: At first, k-means [4] is applied to per-

form a geo-spatial clustering of the data points into a total amount
of 𝑁𝑐 clusters. For each cluster 𝑐 with 𝑁 cluster points, the Root
Mean Squared Error (RMSE) is calculated based on the difference
between predictions 𝑆 and measurements 𝑆 as

RMSE =

√√√∑𝑁
𝑖=1

(
𝑆𝑖 − 𝑆𝑖

)2

𝑁
. (1)

If the computed value exceeds a defined threshold RMSEmax, the
cluster 𝑐 is considered as a black spot cluster. Finally, all black spots
clusters are fitted to ellipses based on the dominant intra-cluster
distance vector. Fig. 3 summarizes different steps for of the black
spot cluster determination.

Online application: For the later exploitation of the derived
knowledge by the reinforcement learning-based data transmission,
a vehicle needs to know if it is currently within a black spot region.
For a given cartesian point P, an intersection test for an 𝛼-rotated
ellipse centered at P0 is performed as

(𝑐 · v.𝑥 + 𝑠 · v.𝑦)2

𝑎2 + (𝑠 · v.𝑥 − 𝑐 · v.𝑦)
2

𝑏2 ≤ 1 (2)

with v = P − P0, 𝑐 = cos𝛼 , and 𝑠 = sin𝛼 . An example for the
black spot regions for MNO A on the considered evaluation track
is shown in Fig. 4.

3.3 Reinforcement Learning for Opportunistic
Data Transfer

The actual opportunistic data transfer process is represented by a
Linear Upper Confidence Bound (LinUCB) [13] contextual bandit
with two arms which correspond to the possible actions:
• aIDLE delays the data transfer in favor of an expected re-
source efficiency improvement in the future. Acquired sensor
data is buffered locally.
• aTX transmits the whole data buffer.

The context-aware arm selection process is modeled as

𝑎𝑡 = arg max
𝑎∈A𝑡

©«
\̂𝑇𝑎 x𝑡,𝑎︸ ︷︷ ︸

Estimated reward

+𝛼
√
x𝑇𝑡,𝑎A

−1
𝑎 x𝑡,𝑎︸             ︷︷             ︸

UCB C𝑎

ª®®®®¬
(3)
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Figure 3: Steps for the Determination of Black Spot Regions

Figure 4: Resulting Black Spot Regions for MNO A on the
Evaluation Track (Map: ©OpenStreetMap contributors, CC
BY-SA)
whereas the estimated arm reward is derived through ridge regres-
sion with \̂𝑎 being the regression coefficients and x𝑡,𝑎 = {𝑆 (𝑡),Δ𝑡}
being the 𝑑-dimensional feature vector for arm 𝑎 in time step 𝑡 .

The parameter 𝛼 = 1 +
√

ln(2/𝛿)
2 controls the degree of exploration

based on the only system parameter 𝛿 . For the Upper Confidence
Bound (UCB) part, A𝑎 = D𝑇

𝑎D𝑎 + I𝑎 consists of a 𝑑-dimensional
identity matrix I𝑎 and D𝑎 as a𝑚 × 𝑑 matrix that contains the𝑚
rows of training inputs.

After performing either the TX or the IDLE action, a real-valued
reward 𝑟𝑡 is observed and the regression coefficients are updated
as:

\̂𝑎 ← A−1
𝑎 b𝑎 (4)

with
b𝑎𝑡 ← b𝑎𝑡 + 𝑟𝑡x𝑡,𝑎𝑡 (5)

whereas b𝑎𝑡 is set to a 𝑑-dimensional zero vector upon first ini-
tialization. The reward is calculated action-specific based on the
corresponding reward functions:

𝑟TX (𝑆,Δ𝑡) =
𝜔 · (𝑆 − 𝑆∗)

𝑆max
+ Δ𝑡 · (1 − 𝜔)

Δ𝑡max
(6)

𝑟IDLE (Δ𝑡) =
{
Ω Δ𝑡 ≥ Δ𝑡max
0 else

(7)
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whereas 𝑆∗ represents an MNO-specific target data rate and Δ𝑡max
corresponds to an application-specific upper bound for the tolerable
AoI.𝑤 is a trade-off parameter for controlling the focus on either
data rate optimization or AoI focus. Ω is a negative number which
is used as a deadline violation punishment in order to ensure that
the TX action is immediately if the deadline is violated.

4 METHODOLOGY
A two-state methodological approach is applied: At first, a DDNS
setup (see [18]) is utilized to train the reinforcement learning mech-
anism. Afterwards, we perform a real world measurement study
for comparing the novel approach with different existing methods:

• Periodic transfer represents the typicalMachine-type Com-
munication (MTC) approach where data is transmitted based
on a fixed interval (here Δ𝑡 = 10𝑠) without considering the
current channel quality.
• Channel-aware Transmission (CAT) [11] is a probabilis-
tic data transmissions schemewhich uses the measured SINR
for client-side scheduling of sensor data transmissions.
• Machine LearningCAT (ML-CAT) [15] is amachine learning-
based extension to CAT. Instead of only using a single net-
work quality indicator for the opportunistic medium access,
ML-CAT uses the predicted data rate (similar to Sec. 3)
• Reinforcement Learning CAT (RL-CAT) [20] is a first
reinforcement learning-enabled data transfer method which
replaces the probabilistic medium access with Q-learning-
based decision making.

For the real world evaluation, we consider a 25 km long evaluation
track which consists of highway and suburban parts. For each
transmission scheme, five drive tests are performed where sensor is
transmitted via Transmission Control Protocol (TCP) in the uplink
through the cellular network of three different German MNOs. All
transmissions are performed with an Android-based UE (Samsung
Galaxy S5 Neo, Model SM-G903F). The applied BS-CB parameters
are summarized in Tab. 1.

Table 1: Default parameters of the evaluation setup

Parameter Value

Maximum buffering time Δ𝑡max 120 s
Trade-off factor𝑤 0.9
Deadline violation punishment Ω -1
Exploration parameter 𝛿 0.1
Number of clusters 𝑁𝑐 100
MNO-specific black spot threshold RMSEmax 3, 2.25, 2.5

The prediction models are learned with the Waikato Environ-
ment for Knowledge Analysis (WEKA)-based [9] Lightweight Ma-
chine Learning for IoT Systems (LIMITS) [17] framework which
provides automatic generation of C/C++ code for the trained mod-
els. For unsupervised learning and the Gaussian Process Regres-
sion (GPR) models required for the DDNS setup, the Statistics and
Machine Learning Toolbox of MATLAB is utilized.

For analyzing the communication-related power consumption
of the UE, the most important indicator is the applied transmission
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power 𝑃TX. Although Android-based UEs do not expose this infor-
mation to the user space, it can be inferred from radio signal mea-
surements due to a significant correlation with distance-dependent
indicators such as RSRP [8]. In order to determine the power con-
sumption as a function of the applied transmission power, we utilize
laboratory measurements of the device-specific power consump-
tion behavior. A deeper discussion about the applied method can
be found in [15].

For calculating the network resource efficiency of the transmis-
sion schemes in the post processing, we revert the table lookup
procedure described in [14]. Based on the CQI measurements, the
required MCS and Transport Block Size (TBS) indices are obtained
from a lookup table.

5 RESULTS
In this section, the results for the DDNS-based system optimization
as well as for the real world performance evaluation are presented.

5.1 Parameterization and Convergence
As discussed in Sec. 3.3, opportunistic data transfer is subject to
a fundamental trade-off between data rate and AoI optimization
which can be controlled via the trade-off factor𝑤 . For the purpose
of comparing the performance in both dimensions, we define two
efficiency indicators:
• The data rate efficiency 𝐸S = 𝑆/𝑆∗ measures how good the
average data rate 𝑆 approaches the target data rate 𝑆∗
• The AoI efficiency 𝐸AoI = 1 − Δ̄𝑡/Δ𝑡max is a measure for
the margin between the average AoI and the deadline Δ𝑡max
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Figure 7: Performance Comparison of Opportunistic Transmission Schemes for Multiple MNOs

Fig. 5 shows the normalized behavior of both indicators for
different values of 𝑤 . Is can be seen that the data rate benefits
from larger packets – which correspond to a lower AoI efficiency
– in order to achieve a better payload-overhead ratio and a better
compensation of the slow start mechanism of TCP. In the following,
we focus our analysis on data rate optimization and assume𝑤 = 0.9.

Before the novel transmission scheme can be efficiently applied
in the real world, the reinforcement learner needs to adjust its
decision making through observation of a multitude of performed
transmissions. For this purpose, we replay the measurements of [19]
offline. Hereby, each epoch represents one virtual drive test on the
evaluation track within the DDNS. Fig. 6 shows the resulting data
rate of the proposed contextual bandit-based transmission scheme.
For reference, the convergence behavior of a Q-learning approach
according to [20] and a deep reinforcement learning variant of
the latter are shown. Hereby, the corresponding Artificial Neural
Network (ANN) is set up according to [18] with two hidden layers
and ten neurons per hidden layer. It can be seen that the proposed
contextual bandit-based method achieves the highest absolute data
rate and provides an early convergence which is reached after
∼200 epochs. For the considered deep reinforcement learning and
Q-learning methods, the final data rate of the converged system
is significantly lower. Moreover, the Q-learning based approach
shows a slow convergence behavior.

5.2 Real World Performance Comparison
The performance of the converged transmission schemes is now
analyzed in a real world scenario (see Sec. 4). Fig. 7 shows multiple

performance indicators for the proposed transmission scheme as
well as for the considered references. It can be observed that the
resulting data rate is continuously improved through the different
evolution stages of opportunistic data transfer: While the SINR-
aware CAT method already outperforms the periodic approach, the
introduction of machine learning-based network quality assessment
by ML-CAT leads to significant performance improvement. Ulti-
mately, reinforcement learning-based autonomous decision making
(RL-CAT and BS-CB) achieves the highest data rate values. For
MNO A, BS-CB almost triples the resulting data rate. In addition,
it can be seen that the apparently selfish goal of data rate opti-
mization results in a significant reduction of MTC-related resource
occupation – 84% to 89% – which contributes to a better overall
coexistence of different resource-consuming entities within the net-
work. As a side effect, also the power consumption of the mobile UE
is reduced as the opportunistic transmission approaches implicitly
prefer higher RSRP values which have a strong correlation with
the applied transmission power [8]. For MNO B, it can be seen that
the general power consumption level is much higher than for the
other MNOs. In this scenario, the average distance to the eNBs is
significantly higher forMNO B then for the other MNOs. As a result,
a significantly higher transmission power is applied, which causes
the mobile UE to be in a less power-efficient amplification stage
for most of the time [8]. While the previous results have shown
that opportunistic sensor data transfer allows to achieve significant
improvements on the client and network side, the price to pay is an
increased AoI – about nine times the AoI of the periodic approach
– which is the result of the buffering delay. However, the proposed
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Figure 8: Black Spot Statistics

method allows to specify an upper limit for the acceptable AoI via
the parameter Δ𝑡max (see Sec. 3.3).

5.3 Side Effects of Black Spot-aware
Communication

Since the black spot-aware data transfer avoids transmissions if the
UE is within a black spot region, it causes an additional buffering
delay. Therefore, we now investigate the times and distances the
vehicles spend within the black spot regions. Fig. 8 shows the cor-
responding Empirical Cumulative Distribution Functions (ECDFs)
for the three MNOs. In addition, the behavior of a potential future
multi-MNO extension are shown where the vehicle dynamically
changes the network if it is within a black spot region. For all
MNOs, 50 % of the black spot regions spread no more than 100 m
which only results in a slight additional delay. However, within the
considered scenario, most of the black spots could be compensated
through a multi-MNO approach which massively reduces the side
effects of the black spot-aware approach.

6 CONCLUSION
In this paper, we presented BS-CB as a novel approach for op-
portunistic data transfer for vehicular sensor data. The proposed
method makes use of a hybrid machine learning approach: Rein-
forcement learning is applied to autonomously schedule data trans-
missions with respect to the network quality based on data rate
predictions. In addition, knowledge about geographically clustered
black spot regions is utilized for avoiding transmissions with high
prediction uncertainties. In a comprehensive real world evaluation,
it was shown that the novel method not only achieves significant
improvements for the uplink data rate and power consumption
of the mobile UE, but also contributes to optimizing the resource
efficiency of delay-tolerant MTC applications. In future work, we
want to extend BS-CB with a multi-MNO strategy which allows
dynamic network selection for compensating black spots regions.
In addition, we plan to further analyze cooperative approaches –
where the network infrastructure actively distributes network load
information to the mobile clients [16] – for data rate prediction in
order to optimize the resulting accuracy. Moreover, we aim to move
another step forward towards zero touch optimization through inte-
gration of online learning mechanisms for the data rate prediction.
This would then allow the system to self-adapt to the concept drift
caused by significant changes within the cellular network.
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