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Abstract—Cellular-Vehicle-to-Everything (C-V2X) communi-
cation is an essential component of future automated traffic
systems as well as a promising technology for mobile robot
applications. In those scenarios, the vehicles typically exchange
location data obtained by on-board positioning modules such as
satellite receivers or sensor-based SLAM (Simultaneous Localiza-
tion and Mapping). As such information is vital for cooperative
applications, its validation is an important safety feature. In this
paper, we propose a method to repurpose available information
from C-V2X to estimate the distance between sender and receiver.
By analyzing the timing of Cooperative Awareness Messages
(CAMs) within the C-V2X resource grid it is possible to derive
fairly accurate distance information, which can be used to
validate the location data contained within the payload. Such
validation is helpful in case of technical failures of positioning
modules or intentional transmission of fraudulent location data.
Our analysis based on MATLAB simulation shows a positioning
error of 30 m for typical traffic and robot scenarios. One key
learning is that existing C-V2X signal information can be used
to achieve this performance even in the presence of multipath
fading. Although the positioning is not yet precise enough for
stand-alone use, it is useful for overall safety and reliability
measures in cooperative vehicular and robotic applications.

I. INTRODUCTION

The exchange of positioning information is a foundational

function of many cooperative intelligent systems. Applica-

tions ranging from automated traffic systems utilizing Global

Navigation Satellite System (GNSS) data to robotic systems

utilizing Simultaneous Location and Mapping (SLAM) require

agents to be aware of agents outside of their own sensor

range (Fig. 1). Failures in a positioning module can therefore

disrupt not only a single agent’s ability to function but also

impair distributed functionality such as early collision warning

systems or predictive path planning. While simple on-board

checks such as outlier detection can allow single agents

to diagnose problems autonomously, systematic malfunctions

might remain undetected. The deployment of fully redundant

positioning modules is a common approach to discover further

error cases. Some systematic errors can, however, not be de-

tected on-board, e.g. due to limitations in the utilized technol-

ogy. In this case, an external reference is required to classify

errors. Existing approaches cooperatively validate or improve

positioning using a combination of high precision environmen-

tal models for error prediction and distributed algorithms that

require communication of significant amounts of sensor data

between the agents. In this paper, we propose an alternative
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Fig. 1. Validation of CAM positions for vehicles on a highway and rescue
robots inside an exhibition hall/shopping mall. On the reception of messages
the time of arrival (TOA) is used to estimate the range to the transmitter.

scheme that utilizes existing timing information, which is

already measured within the communication system, to val-

idate broadcast positions with low complexity and overhead.

Our approach is tailored to cellular vehicle-to-everything (C-

V2X) communications, specifically to cooperative awareness

messages (CAM). In a CAM-scenario, agents are synchronized

to a reference clock and periodically broadcast their position.

When a receiver detects such a message, we use its detected

offset to the reference clock as a measure of the distance to

the sender. Comparing the position contained in the payload

with the estimated distance, each receiver is able to evaluate

the plausibility of the received data. Building on this local esti-

mation at each receiver, we investigate how multiple receivers

can combine their information through voting or trilateration

to yield a cooperative validation scheme with higher accuracy.

The classification performance of our approach depends on the

number of receivers and the desired position tolerance which

we characterize in the discussion of our experimental results.

In the remainder of this paper, we explain the underlying

validation approaches in Section II and the design of our

simulation in Section III. Section IV contains our validation



results. We finally conclude the paper in Section V.

A. Related Work

The research in the field of the enhancement of GNSS po-

sitioning is manifold, as GNSS localization errors might have

severe impacts on the system safety. An algorithm for local

interference compensation of GNSS systems is introduced in

[1]. While a possible accuracy gain of more than 45% is

achievable, high precision 3D models of the environment are

necessary for this ray-tracing approach. The enhancement of

vehicles GNSS position by cooperative information exchange

is presented in [2]. V2X communication is used to exchange

GNSS pseudoranges to compute reliable confidence domains.

Localization using LTE signaling has also been studied in the

past. In [3] the achievable localization accuracy of LTE posi-

tioning reference signals is investigated. While sub-centimeter

level precision is achieved within this analysis, these results

are not realistic as propagation effects are not included. The

maximum positioning accuracy for Vehicle-to-Infrastructure

(V2I) communication over LTE is investigated in [4]. For

the maximum LTE bandwidth of 100 MHz sub-meter level

position accuracies are achievable. An LTE-based vehicular

position tracking in the field is studied in [5]. The ESPRIT and

Kalman Filter for Time-of-Arrival Tracking (EKAT) algorithm

is used to obtain position accuracies around 20-30 m based

on LTE downlink signals. Vehicle-to-Vehicle (V2V) based

cooperative localization is presented in [6]. GNSS measure-

ments are exchanged to mitigate multipath effects and improve

the positioning accuracy to fulfill the safety requirements for

autonomous driving. An 802.11p-based approach using V2V

and V2I communication to improve vehicles GNSS accuracy

is proposed in [7]. Instead of timing information, the received

signal strength of periodic beacon messages is used to achieve

a estimation accuracy of approximately 1 m. However, this

precision is based on aggregation of multiple measurements

over time, not for a single measurement.

Of course it is also always possible to add a secondary

localization system to improve the position accuracy i.e. add

Ultra-Wideband (UWB) systems with centimeter precision

[8] for robotic indoor scenarios or as in [9], where UWB

ranges are exchanged over V2V communication to achieve

a localization accuracy at sub-meter level.

In this work we aim for a low complexity approach to

validate position information without the need for additional

hardware such as UWB and by utilizing timing information

already present within C-V2X modems, rather than requiring

additional computational effort for channel estimation schemes

such as ESPRIT.

II. RANGE ESTIMATION AND VALIDATION USING C-V2X

The C-V2X specification is a part of the fourth and fifth

generation of mobile communication systems (4G and 5G)

standardized by 3GPP. It has been specifically designed to

allow ad-hoc broadcasting of periodic status messages. This

communication pattern enables cooperative awareness which

is especially useful in intelligent transportation systems (ITS)
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Fig. 2. Examples of the cross correlation of expected and received refer-
ence signals. Due to multipath fading the prominent path does not always
correspond to the LOS, which is vital for position estimation.

for road safety and autonomous driving as well as in co-

operative robotic applications such as exploration or search

and rescue missions. The automotive sector has standard-

ized cooperative awareness messages (CAM) to enable next

generation vehicles, to exchange GNSS positions and further

status information such as speed or heading. On lower layers,

periodic ad-hoc communication in C-V2X is enabled by a

number of design attributes that set it apart from infrastructure-

based mobile communication. The physical sidelink is a direct

communication link between C-V2X agents, that is inde-

pendent from cellular network coverage, using a distributed

channel access scheme. Furthermore, the number of reference

signals utilized for signal detection and channel estimation

is increased, addressing high relative speeds of agents and

decentralized time synchronization. Timing of transmissions

is organized in a fixed grid of subframes of 1 ms. Assuming

sufficient synchronization among the UEs, the time elapsed

between the local start of a subframe and the start of a received

signal, the sample offset, can be used as an estimate for the

signal propagation time and thus the distance to the sender.

The accuracy of this estimate depends on the synchronization

error and the signal detection method. At the receiver, pre-

computed, expected demodulation reference signals (DMRS)

are usually cross-correlated with received signals to detect

the start of a specific transmission. The maximum of this

correlation indicates the instance of the reference signal that

arrived with the highest power, increasing the chance of

successful decoding. It is important to note that in a multipath

environment, the strongest path might not always be the direct

line-of-sight (LOS), making a correlation peak less than ideal

for range estimation, see Fig. 2. Furthermore, the precision

of the range estimate depends on the sampling time of the

receiver. In C-V2X, it is derived from the utilized channel

bandwidth. For a sidelink channel bandwidth of 10 MHz

the sampling time is approximately 65 ns (15.36 MHz rate)

which translates to a range estimation granularity of 19.53 m.

With these considerations on precision and accuracy of timing

offset based range estimation in mind, the remainder of this

section, details our proposed approach to evaluate and combine

measurements.
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Fig. 3. Iterative trilateration scheme that increases robustness against outliers caused by multipath propagation. The scheme is most effective against small
outlier ratios, thus we first attempt to recover LOS information as illustrated in Fig. 2.

A. Secondary correlation metrics for path detection

We expect prominent paths in the propagation channel

to result in path length and power dependent peaks in the

reference signal correlation data. As a low complexity method

of detecting prominent paths, we extract local maxima and

saddle points from the correlation function by additionally

analyzing its central finite difference. Since multipath fading

in combination with Doppler shift, can cause minor additional

peaks in the correlation function, we apply a threshold of half

of the global peak used for frame decoding to identify strong

paths and use the first sample matching these criteria as an

estimate of the LOS delay. A comparison of the basic peak

correlation and the extended LOS detection is shown by Fig. 2.

Applying the method described above yields a number

of sample offsets that are estimated to represent a path the

physical signal could have taken through the environment. We

utilize this information to validate received position data using

two different methods.

B. Matching range and prominent path occurrence

We can expect that distances to accurate positions coincide

with detected prominent path lengths more often than distances

to erroneous positions do. Based on this statistical correlation,

each receiver can classify a received message autonomously:

After decoding a message, the receiver uses the received

position data to determine its hypothetical distance to the

sender. The validity of the position data is classified by

evaluating whether the corresponding sample offset coincides

with a prominent path candidate. To enhance the confidence of

the estimation, the votes of multiple receivers can be combined

in a majority decision.

While this approach is simple and requires no computa-

tional effort other than the LOS detection, it does not exploit

information contained in the geometrical relation of multiple

measurements. In order to incorporate this information, which

is readily available through the CAM message exchange, we

propose an additional approach that starts by estimating the

position of the sender through timing information.

C. Trilateration via LOS path

When a message has been successfully decoded, the corre-

lation function is analyzed to find a LOS delay as described

above. The estimated LOS timings of multiple receivers are

aggregated to trilaterate the sender’s position. The difference

between this position and the CAM position is the trilateration

error, that will be used as performance indicator within this

work. This estimation requires knowledge of other receiver’s

positions and estimated ranges. Since positions are already

exchanged through CAM, a straightforward approach could be

to insert a list of past measured ranges into a CAM broadcast.

The trilateration approach analyzed in this paper starts with

an initial linear approximation [10], followed by a Gauss-

Newton optimization. Robustness against timing errors caused

by multipath propagation and sampling granularity is increased

by an iterative outlier removal scheme as presented in [11].

Range measurements disagreeing with the current estimate

are iteratively removed until all residuals lie within a one

sample range, as illustrated in Fig. 3. The performance of

both approaches depends on the number of receivers whose

estimates are combined. Hence we evaluate three vehicular

highway scenarios with different traffic densities: free, stable

and congested (7, 20, 40 vehicles/km/lane) based on [12].

III. SIMULATION DESIGN

The performance of our proposed validation schemes is

evaluated through numerical simulations based on standard-

ized C-V2X channel models and performance data. A GNSS

based time synchronization of all agents, as defined in the

C-V2X standard, is assumed. For the simulation of the C-

V2X physical layer, the MATLAB LTE Toolbox is used.

The receiver sensitivity is set to match the Block Error Rate

(BLER) to receive power relationship of the field experiments

published in [13]. To obtain a computationally efficient way

of running large scale simulations, we first abstract block and

timing error models based on 1,000,000 simulated physical

layer transmissions. The receive power, BLER distribution and

the fitted BLER model based on a logistic function is shown

in Fig. 4.

Fig. 4. BLER distribution based on receive power measurements from [13]
and the resulting model abstraction used in the simulation.



Fig. 5. EVA channel and offset distribution for correlation peak and LOS
detection with fitted Gaussian Mixture Models.

The propagation channel is modeled with the Extended

Vehicular A model (EVA) as proposed by 3GPP for fading [14]

and an ITU P.1411-6 vehicular communication model for path

loss [15]. Histograms showing the timing detection accuracy

of peak and LOS detection schemes are shown in Fig. 5.

Note that the peak detection scheme detects strong indirect

paths in a large number of cases. The resulting timing offsets

coincide with strong delay taps in the EVA channel model.

Our proposed LOS detection scheme is able to reduce these

false detections, although not completely eliminate it. To ease

the computational load of subsequent simulations, the timing

detection errors are fitted through Gaussian Mixture Models

that are overlaid in Fig. 5. A summary of the relevant simu-

lation parameters used in this paper is depicted by TABLE I.

IV. VALIDATION RESULTS

With models for successful decoding and timing detection

in place, we can efficiently evaluate the range matching and

trilateration approaches for position validation. Each valida-

tion scenario places a number of vehicles randomly on a

stretch of road as specified in TABLE I. One vehicle then

sends a position that is affected by a random error of up

to 500 meters, which is the maximum transmission range

(Fig. 4). Since the validation task is a classification problem,

sensitivity and specificity are used as the primary statistical

performance measures. Sensitivity, also known as the true

TABLE I
SIMULATION PARAMETERS

GENERAL PARAMETERS

lane-width 3.7 m
number of lanes 10
lane-length 1500 m
traffic densities 7, 20, 40 vehicles/km/lane

C-V2X PARAMETERS

sidelink frequency 5.9 GHz
sidelink channel bandwidth 10 MHz
resource blocks per subchannel 10
modulation and coding scheme 5
sampling rate 15.36 MHz
transmit power 23 dBm
fading channel model EVA [14]
pathloss channel model ITU P.1411-6 [15]

Fig. 6. Validation performance for a single receiver using the range matching
approach. The discrete steps are due to the C-V2X sampling rate.

positive rate describes the proportion of erroneous positions

that are correctly identified. The specificity (true negative rate)

defines the proportion of valid positions, that are classified as

such. These metrics are related to the position tolerance i.e. the

difference between a CAM position and an estimated position

above which the CAM position is classified as invalid.

A. Range matching based classification

For the range matching based approach each receiver evalu-

ates the cross correlation of the received and the expected ref-

erence signal at the sample that corresponds to the hypothetical

distance to the sender. Therefore it is possible for each receiver

to individually decide whether the senders position is accurate.

In Fig. 6 the sensitivity and the specificity of an individual

offset evaluation is presented. For this method a sweet spot

at 80 m position tolerance exists, as this is the only tolerance

where both, the sensitivity and the specificity are above 50 %.

The combination of multiple classification results for different

traffic densities is shown in Fig. 7. Using majority voting, we

can boost the ensemble confidence to around 60 % in low

traffic densities and 80 % in high traffic densities. But again,

this can only be achieved at the sweet spot.

Fig. 7. Sensitivity and specificity of the offset evaluation combined from
multiple receivers for different traffic densities (in [vehicles/km/lane]). The
discrete steps are caused by the C-V2X sampling rate.



Fig. 8. Trilateration error for different traffic densities.

B. Trilateration based classification

Fig. 8 depicts the trilateration error for different traffic

densities. As expected a higher traffic density decreases the

maximum trilateration error from 50 m to 22 m. For a stable

traffic density (20 vehicles/km/lane) a maximum trilateration

error of 30 m and a median error of 10 m can be achieved.

The sensitivity and specificity of the triangulation based val-

idation approach is shown by Fig. 9. Invalid positions can

be classified with approximately 99% confidence across all

evaluated tolerances. The sensitivity slightly decreases when

tolerance increases. This can be explained by an increase of

the valid area and together with its circumference, making it

likelier for simulated positions to lie close to this decision

boundary. These positions are harder to classify and slightly

more of them are falsely classified as valid. The specificity

of the classification highly correlates to the distribution of

the trilateration error. The saturation of the specificity is

reached if the position tolerance matches the maximum of the

trilateration error (shown in Fig. 8). Starting from this point, all

correct positions can be classified as such and the classification

is almost perfect. For a traffic density of 7 vehicles/km/lane a

a position tolerance of 50 m is necessary to reach a sensitivity

of 99 % and a specificity of ≈100 %. For a density of

40 vehicles/km/lane even better results are achieved for half

the position tolerance.

V. CONCLUSION

In this paper, we presented how existing measurements from

the C-V2X physical layer can be used with little computation

and communication effort to validate positioning data. Using

a trilateration algorithm, and an position tolerance of 22-50 m,

we classify errors with a confidence of 99% even in low traffic

densities while at the same time being robust against false

positives. When decentrally validating ranges for a minimum

complexity approach, there is a sweet spot in which each

receiver acts as a weak classifier for both positive and negative

cases. Using majority voting, we can boost the ensemble

confidence to around 60 % in low traffic densities and 80 % in

high traffic densities. In future work we will evaluate whether

neural networks can effectively validate ranges based on the

receiver correlation values without overfitting to specific chan-

nel models. Furthermore, we consider gathering real world

data with C-V2X capable hardware to validate the concept

introduced in this work.

Fig. 9. Classification performance using trilateration on offsets obtained by
LOS detection for different traffic densities (in [vehicles/km/lane]).
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