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Abstract—Rapid growth of massive Internet-of-Things (IoT)
technologies and a multitude of applications represent an ongoing
paradigm shift within our traditional human-centric cellular
communication towards expanding connectivity for billions of
things. Nowadays, initial generations of connected IoT devices
and applications enabled by Cellular-IoT (CIoT) and Low Power
Wide Area Networks (LPWAN) technologies are deliberately
kept simple and based on equidistant, regular communication
intervals. However, this simple communication behavior does not
meet 5G requirements of massive Machine Type Communication
(mMTC) regarding high node density, long-term energy efficiency
and low cost per data. In contrast, this paper presents an ap-
proach for an Artificial Intelligence (AI) based model-predictive
communication to reduce the effort for continuous, regular data
exchange-patterns. Training and test data for the generation
of the underlying model are obtained from long-term envi-
ronment sensor measurements. The derived model approaches
are applied to an integrated Industrial-IoT field demonstrator
covering a centralized heating control system and decentralized
LoRa temperature sensors. Finally, results constitute that overall
communication effort per day can be reduced by 60% to more
than 95% depending on the required accuracy, significantly
contributing to the achievement of mMTC performance targets.

I. INTRODUCTION

The Internet of Things (IoT) is increasingly becoming
a reality in people’s homes as well as industrial contexts.
Emerging long range communication technologies aim to
enable a rising amount of sensor applications that have to
meet high requirements regarding a high node density, low
cost, long battery life and therefore high efficiency in data
communications. Requirements defined for 5G massive Ma-
chine Type Communication (mMTC) scenarios target a node
density of 1.000.000 devices per square kilometer [1]. Two
classes of technologies address these requirements using dif-
ferent concepts: Cellular-IoT (CIoT) devices take advantage of
exclusively allocated spectral resources in licensed frequency
bands in order to enable an interference-free communication.
However, the scheduling approach used in licensed frequency
bands can only allocate resources for a given amount of
devices. Low Power Wide Area Networks (LPWAN), on the
other hand, operate in unlicensed frequency bands, in Europe
especially the Short Range Device (SRD) bands at 868 MHz
and the Industrial Scientific and Medical (ISM) Band at
2.4 GHz. Unlicensed frequency bands can technically be used
by anyone and any number of devices. However, regulatory
restrictions defined by ETSI [2] apply a fair usage policy of the
shared medium, and an interference free channel usage cannot

be guaranteed. Typical IoT devices are periodically sending
their data in equidistant time intervals. This behavior, while
keeping devices simple, does not enable efficient usage of the
limited spectral resources available. This work introduces a
model-predictive communication framework that allows IoT
devices to rate the value of measured sensor data in order
to reduce communication effort, leaving spectral resources for
other participants. This approach can increase the number of
devices being able to get allocated resources in licensed bands
as well as reduce the interference probability in unlicensed
bands. The concept of this work is illustrated in Fig. 1.
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Fig. 1. Model-predictive Communication in Internet of Things Environments

A data-driven approach is proposed in this work, relying on
typical data acquisition use cases of sensor networks in public
smart city environments as well as Industrial IoT applications
like the heating system used as a data source in this work. The
application data provided by these sensors is usually measured
periodically. To optimize the channel utilization, it is proposed
not to transmit every measurement, but only those that show
a significant deviation to a predefined model. Therefore, two
time series forecasting mechanisms are evaluated in this work
to provide such a model of a temperature sensor setting,
however, the use case can be adapted easily as these methods
only rely on historical data.

The presentation of this work is structured as follows. Sec-
tion II gives an overview of model-predictive communication
frameworks as well as time series prediction models used in
communication contexts. The implemented models and the
underlying data is depicted in section III. The performance
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comparison of these models is illustrated in section I'V. Trans-
fer of the model in the Industrial-IoT domain is depicted in
section V before a conclusion is drawn in section VI.

II. RELATED WORK

As a first step, in [3] we analyzed the capabilites of Lo-
RaWAN networks to contribute to 5G mMTC device density
targets. In this work, we provide a method to optimize channel
utilization in order to further increase this contribution. The
underlying concept of model-predictive communication has
been introduced in [4] and revised in [5] for the application of
photovoltaic (PV) control data communication. In these works,
a deterministic Efficient PV Production Model (EPVP) has
been developed and used in order to predict the power produc-
tion of PV systems. However, due to the deterministic nature
of the applied model, the adaption to other use cases is not
easily possible. Considerable applications and algorithms for
Machine Learning in communication networks are presented
and discussed in [6], where the authors focus on modeling the
network performance. The algorithms of choice for this work,
namely Autoregressive Integrated Moving Average (ARIMA)
and Long Short Term Memory (LSTM), have been compared
for a finance data application in [7]. The authors conclude that
LSTM outperforms ARIMA in terms of prediction accuracy
provided that enough data is available. The authors of [8]
propose an LSTM based analysis of smart meter measurements
in order to predict residental load of individual customers
in a smart grid system. The LSTM approach is compared
to other state of the art machine learning algorithms, such
as backpropagation neural networks (BPNN) and k-nearest
neighbor (KNN) regression. Presented results conclude that
LSTM provides significantly better forecasting results, thus
justifying the usage of LSTM in this work. In [9], an Encoder-
Decoder LSTM based approach for predicting channel quality
in various wireless networks, called DeepChannel, is pro-
posed. The authors compare their LSTM approach to an
ARIMA approach, concluding that the LSTM based solution
performs better when predicting multiple timesteps ahead.

III. MODEL-PREDICTIVE COMMUNICATION FOR
INTERNET OF THINGS APPLICATIONS

As opposed to conventional, periodic data transmissions
of IoT sensor applications, this work proposes a data-driven
model-predictive approach. This approach uses past sensor
data as input for a time series forecasting algorithm for
predicting the future data development in the model prediction
backend. The predicted series of sensor data can be distributed
periodically to the sensor devices and the application manage-
ment system to determine the deviation of measured sensor
data from the prediction. Therefore, only sensor data deviating
more than a given tolerance from the prediction model are
communicated, resulting in a reduction of communication
effort. The deviation is also propagated back to the model
prediction backend in order to adjust the input data for the
prediction algorithms. A schematic overview of this approach
is depicted in figure 2.
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Fig. 2. Schematic Overview of the Model-Predictive Communication ap-
proach

In the following section, the underlying dataset as well as
the analyzed modeling approaches are introduced.

Model Development based on Private/Public Domain

The dataset used in this work originates from an en-
vironmental indoor sensor located in Dortmund, Germany,
representing a typical small private or office room environment
(private/public domain). The system collected temperature,
humidity, and CO4 concentration with a frequency of roughly
5 minutes from the 1st of January 2019 to 19th of November
2019. In this work, the dataset has been resampled to 30
minutes timesteps to reduce model complexity. The raw data
can be accessed via [10].

A. Data-Driven Modeling Approaches

In this work, an autoregression based approach and a neural
network approach have been used. Both models leverage
the advantages of using a decomposition method, which is
described in the following section.

Seasonal and Trend decomposition using Loess (STL)

In this work, Seasonal and Trend decomposition using Loess
(STL) method is used for decomposition of an original time
series Y'(t) = T'(t) + S(t) + R(t) into trend 7'(t), seasonal
S(t) and remainder component R(t) [11].

By using this decomposition method, typical properties of
the underlying data, such as a daily profile for temperature
data, can be extracted. STL is an iterative procedure using
mainly two loops. The outer loop calculates robustness co-
efficients which are used to minimize the impact of outliers,
and the inner loop extracts and updates the seasonal and trend
components by using Locally Weighted Scatterplot Smoothing
(Loess) [12].

The decomposition of sample temperature measurement
data used in this work is shown in Fig. 3

The initial data shows a strong daily seasonality profile, as
well as a temperature trend corresponding with the weather.
The data also shows a significant remainder part which could
not be identified by the algorithm as part of the trend or
seasonality.

In order to forecast the future development of the time
series, forecast algorithms can be used on the deseasonalized
time series Yyeseas(t) = T'(t) 4+ R(t), as the seasonal, periodic
component typically changes slowly. Therefore, the extraction
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Fig. 3. Decomposition of measured temperature data from 18th of August
until 21st of August using STL

of the seasonal component allows to reduce the complexity
of the input data, resulting in a smaller prediction error of
the model. The seasonal component is then added back to the
forecast time series.

Autoregressive Integrated Moving Average (ARIMA)

One of the most used state of the art algorithms in time
series forecasting is the Autoregressive Integrated Moving Av-
erage (ARIMA). This algorithm consist of three components,
the autoregressive part AR(p), the integrated part 7(d) and the
moving average part M A(q). AR(p) implies the past values
of the series which are used in the prediction model. The
parameter p defines how many past values are considered.
I(d) refers to the differencing which is often used to make
a time series stationary, where d is the degree of differencing.
The MA(gq) component marks the error of the model in
terms of ¢ previous error terms. ARIMA models are typically
specified by the parameter set (p,d,q), which defines the
parts of the model mentioned above. In this work, an ARIMA
implementation for the statistical programming language R is
used [13]. This implementation allows the usage of automatic
parameter selection for p, d and ¢ for every model realization.
d is depicted by a unit test procedure to test for stationarity
of the time series, p and ¢ are found by minimizing Akaike’s
Information Criterion (AIC).

Fig. 4 shows a prediction using ARIMA(0,1,0) for the 2st
of August 2019 using a training period of three previous
days. In addition to the predicted temperature, the 95% and
80% prediction intervals are shown as well as the actual
measurement as test data.

It is shown that ARIMA can achieve a good match be-
tween the predicted and the measured temperature for that
specific day, resulting in the measured temperature curve lying
mostly inside the 80% prediction interval. Figure 5 shows a
comparison between the measured and predicted data with
different tolerance ranges of 0.5°C, 1°C and 2°C respectively,
which means that a deviation of the measured data from the
predicted model outside of the chosen tolerance will result in
the measured temperature being sent to the heating control
system. For this day, a reduction of communication events by
87% can be achieved with a tolerance of 0.5°C. If a deviation
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Fig. 4. Forecast for one sensor using STL + ARIMA(0,1,0) for the 21st of
August 2019 with 95% and 80% Prediction Intervals

below 1°C is sufficient, the maximum reduction potentials are
achieved and no communication event would be needed on the
given specific day.

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM) networks are a subset of
Recurrent Neural Networks (RNN) developed by Hochreiter
et al. [14] augmented with the capability to learn long-term
dependencies in a dataset. Therefore, they are more suited for
time series prediction problems than classic neural network
models. LSTM networks consist of concatenated system mod-
ules, or cells, connected by constant cell state as well as the
data flow through multiple cells. LSTM cells use a “forget
gate” to filter past cell states, and an “input gate” to control
the influence of the cells input.

This work uses the keras framework on top of the Theano
python library for implementing the LSTM model. A network
with a single layer is used to keep the training duration short.
Additionally, as stated in [9], the usage of deeper networks
can even decrease the model accuracy. Within this layer, 50
LSTM cells are utilized, however, the number of LSTM cells
did not cause significant variations in model performance.

Fig. 5 shows an exemplary prediction for the 21st of August
2019 based on the three previous days in comparison to the
ARIMA algorithm.

It can be seen that the LSTM does perform slightly worse
than ARIMA. However, depending on the required accuracy,
it is still capable of reducing the communication effort by up
to 100%.

IV. STATISTICAL PERFORMANCE EVALUATION

In this section both modeling approaches are compared in
terms of the modelling Root Mean Square Error (RMSE) as
well as their potential in reducing communication effort. To
draw statistical conclusions, both models have been validated
using a sliding window approach depicted in Fig. 6.

The overall dataset is split into sliding sets consisting of
a variable amount of consecutive input days followed by
one output day. ARIMA is capable of producing a sufficient
prediction solely based on small amounts of data. In this work,
we analyzed impact of varying input days from 3 to 12, to
predict one forecast day. In contrast, LSTM relies on large
amounts of training data, splitted into multiple input/output
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pairs, to learn necessary features that enable the prediction of
forecast sensor series. To further verify the forecast result, a
10-fold cross-validation approach, with a split of 90-to-10%
between training and test data, is applied.

Fig. 7 illustrates the RMSE distributions of both approaches
for varying input periods.
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Fig. 7. Root Mean Square Error (RMSE) for both approaches and varying
training period. ARIMA shows a smaller RMSE than LSTM, however the
mean error for both approaches remains nearly constant.

Both models exhibit a smaller error with smaller training
periods, however, the training period length does not show a
significant impact on the accuracy of both models. ARIMA
shows a smaller mean error for all training periods (around
0.15°C) than LSTM (around 0.3°C). Except a small amount
of outliers, ARIMA indicates a smaller error spread. The error
distributions of the models indicate an estimation for sufficient
tolerance ranges in which the models can be applied. For
the analysis of the impact the model-predictive approach has
on communication effort, we therefore defined £ 0.5°C as
the smallest tolerance range for the model. As a sensitivity
analysis, two additional tolerance ranges have been defined,
namely £ 1°C and =+ 2°C. Fig. 8 then depicts the potential in
reducing communication effort for the underlying temperature
sensor system. Both models exhibit a potential of more than
60% reduction of communication effort even with a tolerance
of 4+ 0.5°C. Even with our minimum defined tolerance range
of £ 0.5°C, both models are able to reduce communication
effort by more than 60% for LSTM and about 80% for
ARIMA. While Arima only slightly profits from an increased
number of input days, LTSM performance is reduced for
longer input periods, as these result in an overall smaller
amount of datasets used for training. For higher tolerance
ranges, both models perform nearly equally well, resulting
in a communication effort reduced by more than 90% (=4
1°C) or nearly no communication effort (& 2°C), respectively.
In conclusion, both model approaches exhibit a significant
potential to reduce communication effort of sensor systems.
The ARIMA approach is a preferred solution as it has an
overall better performance and is a much more efficient model
in terms of computational effort and input data requirements.

V. APPLICATION ON INDUSTRIAL-IOT DOMAIN

In order to proof applicability of our developed model
approaches in the Industrial-IoT domain, we have evaluated
the optimization potential for reducing communication effort
to a dataset derived from a large industrial production site. As
depicted in Fig. 9, the manufacturing environment represents a
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more demanding heating use case. The system environment is
divided into two parts. First, intelligent temperature sensors are
installed within a large production environment (manufactur-
ing hall, ground floor) to update the temperature information at
a regular interval of 30 minutes. In total 4 sensors are installed,
which communicate the measured sensor information via a
LoRa Peer-to-Peer (P2P) link to a central heating system,
located in the basement of the production site. The heating
system, consisting of the physical pump and the intelligent
heating control unit, processes the individual input data of each
sensor and determines an actuating variable for the heating
control.
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Fig. 9. System overview of real field environment in industrial production
environment. In our scenario, the central heating control is supported through
the utilization of interconnected temperature sensors.

On the other side, the heating pump and control unit
forwards single sensor information as well as determined
actuating variable to the Wide Area Network (WAN) gateway.
The WAN gateway serves as interface between internal pro-
duction site and a central management system. WAN access
is established over a dedicated LoRaWAN network and is
utilized as a low-cost private back-end data link. Additionally,

the WAN Gateway is equipped with an integrated LTE modem
for remote control and maintenance purposes. In the following,
the centrally aggregated sensor data from 29th of June until the
29th of October 2019 is analyzed and processed with regard
to optimized ressource-efficient communication behaviour.

The raw input data received from the setup described in
this section has to be preprocessed in order to be used for
the forecasting mechanisms described in the previous sections.
Due to imperfect timing of the sensor nodes, the measured
datapoints are not exactly equally spaced. Additionally, some
datapoints are missing because of packet losses. Within the
evaluation of the setup, there have been power outages in the
industrial site, leading to a loss of data for longer time frames.
In order to apply the forecasting algorithms, a resampling
approach has been used together with an interpolation, taking
the seasonality of the dataset into account. In this case a 4-fold
cross-validation is applied, due to the reason that the overall
dataset is limited to a period of about 4 months. Fig. 10 shows
the communication reduction potential in this scenario.
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Fig. 10. Communication effort in the Industrial-IoT field scenario can be
reduced significantly.

It can be seen that the characteristic between both models
is the same as in the private/public domain and, even in
this more demanding environment, a communication effort
reduction of 30% to 80% (LSTM) or 50% to 80% (ARIMA)
can be achieved depending on the required accuracy, proving
the applicability of the modeling approaches for both the
public/private domain and the Industrial-IoT domain.

VI. CONCLUSION

This work presents a model-predictive communication
framework based on the analysis of historical data. The data
used is derived from an indoor environmental sensor system
and the models have been adapted to a real world Industrial-
IoT heating control environment, which defaults to periodical
transmissions every 30 minutes. To reduce this communication
effort, two prediction algorithms have been implemented and
compared, namely the autoregression based ARIMA and a
neural network with LSTM cells. The analysis shows a sig-
nificant potential to reduce communication effort using these
prediction schemes of at least 60% up to more than 90%
depending on the required model accuracy. It can be seen that
ARIMA shows a better performance in this scenario. Together
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with the significantly smaller computation effort needed by the
ARIMA model, this model is able to substantially reduce the
resource demand of IoT systems in terms of spectral resources.

The developed model approach based on temperature data
can be easily transferred to various sensor datasets. This is con-
firmed by a sensitivity analysis applied on humidity and CO»
concentration sensor data with 3 input days, produced by the
same environmental sensor as the initial temperature dataset
(see Fig. 11). It can be seen that, even for stricter tolerances
for COy concentration and humidity, our approach allows
a substantially reduced communication effort. Therefore, the
proposed data driven model-predictive communication scheme
can significantly increase the contribution of various IoT-
technologies to the 5G mMTC targets of one million devices
per square kilometre by reducing the communication demand
per device. Especially LPWAN Technologies like LoRaWAN
can therefore have a substantially higher impact on mMTC
target fulfillment [3].

In future work, the Industrial-IoT heating system setup will
be enhanced by the introduced model-predictive framework
for evaluation. In order to further improve model accuracy,
external factors such as the outdoor temperature and weather
forecast, will be taken into account.
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