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Abstract—The provision of reliable connectivity is envisioned
as a key enabler for future autonomous driving. Anticipatory
communication techniques have been proposed for proactively
considering the properties of the highly dynamic radio channel
within the communication systems themselves. Since real world
experiments are highly time-consuming and lack a controllable
environment, performance evaluations and parameter studies for
novel anticipatory vehicular communication systems are typically
carried out based on network simulations. However, due to the re-
quired simplifications and the wide range of unknown parameters
(e.g., Mobile Network Operator (MNO)-specific configurations
of the network infrastructure), the achieved results often differ
significantly from the behavior in real world evaluations. In
this paper, we present Data-driven Network Simulation (DDNS)
as a novel data-driven approach for analyzing and optimizing
anticipatory vehicular communication systems. Different machine
learning models are combined for achieving a close to reality
representation of the analyzed system’s behavior. In a proof
of concept evaluation focusing on opportunistic vehicular data
transfer, the proposed method is validated against field mea-
surements and system-level network simulation. In contrast to
the latter, DDNS does not only provide massively faster result
generation, it also achieves a significantly better representation
of the real world behavior due to implicit consideration of cross-
layer dependencies by the machine learning approach.

I. INTRODUCTION

Within the approaching transition phase from human-driven
cars to fully-autonomous traffic systems [1], guaranteeing
reliable and efficient communication is of crucial importance
for enabling mutual coordination between the traffic partic-
ipants as well as for optimizing the Intelligent Transporta-
tion System (ITS)-based traffic flow by using the vehicles
themselves as mobile sensors. In order to provide seamless
connectivity and avoid link failures proactively, future com-
munication technologies will rely on short and mid term
predictions of the radio channel quality and meaningful end-
to-end indicators. Context-aware and anticipatory [2] mobile
networking principles such as opportunistic channel access [3]
and dynamic Radio Access Technology (RAT) selection [4]
have been demonstrated to be able to significantly improve
the end-to-end Quality of Service (QoS) of challenging data
links. In order to fulfill the requirements of upcoming 5G
networks for Ultra Reliable Low Latency Communications
(URLLC), Massive Machine-type Communications (mMTC),
and Enhanced Mobile Broadband (eMBB), these methods need

The authors are with Communication Networks Institute, TU Dort-
mund University, 44227 Dortmund, Germany {Benjamin.Sliwa,
Christian.Wietfeld}@tu-dortmund.de

be brought to the next performance level. The exploitation of
machine learning offers the potential to be the catalyst for this
development [5], as its inherent strength is to leverage hidden
interdependencies between measurable variables, which are
mostly too complex to be covered in an analytical solution.

The development process of these novel anticipatory ve-
hicular communication systems confronts researchers and
engineers with a methodological dilemma: While the most
accurate estimations for the future real world performance
can be achieved by performing real world experiments, this
approach is highly time consuming and lacks a controllable
environment. In fact, it is practically impossible to guarantee
fairness by evaluating different methods under the exact same
network conditions. System-level network simulation based
on Discrete Event Simulation (DES) has emerged as the
most commonly used scientific method to analyze mobile
communication systems [6], due to its capability of solving
both issues. However, the necessary model simplifications
reduce the significance of the achieved results for making
conclusions about the real world behavior of the analyzed
System Under Study (SUS).
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Fig. 1. Comparison of modeling complexity and implicated challenges for
classical system-level network simulation and the proposed DDNS.
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In this paper, we present DDNS as a novel approach for
simulating the end-to-end behavior of vehicular communica-
tion networks. Through application of a data-driven approach
and a combination of multiple machine learning models, the
proposed method is able to achieve a level of accuracy almost
similar to real world evaluations, the computational efficiency
of analytical modeling and the environment control of classical
network simulation.

Fig. 1 shows a comparison of the modeling complexity
between the proposed DDNS and classical DES (the archi-
tecture models are inspired by the implementations of the
SimuLTE framework [7]). As the DES approach involves a
large amount of submodules on all logical layers, the model
parameterization within the simulation setup phase is highly
complex. Moreover, many of the required parameters are
either subject to simplifications or are even unknown due to
confidential MNO-specific configurations. In contrast to that,
the proposed DDNS method focuses on direct modeling of the
end-to-end behavior. The complex interdependencies between
the different components are not explicitly parameterized.
Instead, they are implicitly learned solely from the data within
the training phase of the machine learning models.

This manuscript extends and brings together groundwork
for data-driven network simulation [8], data rate prediction
[9] and anticipatory data transmission in vehicular networks
[3], [10], [11]. In contrast to the previous work, we consider
additional experiments, further machine learning methods and
provide an extended theoretical discussion. Furthermore, all
evaluations are performed in uplink and downlink transmission
direction, whereas the previous work focused only on the
uplink performance. The contributions provided by this paper
are summarized as follows:

• Presentation of Data-driven Network Simulation
(DDNS) as a novel performance analysis method for
evaluating and optimizing the end-to-end behavior of
anticipatory vehicular communication systems.

• Comparison of different machine learning approaches for
client-based online data rate prediction in vehicular
Long Term Evolution (LTE) networks.

• Validation against field measurements and comparison
to classical system-level network simulation in a proof
of concept study focusing on opportunistic vehicular data
transfer.

• All raw results and the developed applications are pro-
vided in an open source way.

The remainder of the paper is structured as follows. After
discussing relevant related research in Sec. II, we introduce
methodological aspects in Sec. III. Afterwards, we present
the machine learning-based solution approach for data rate
prediction in vehicular multi-MNO networks in Sec. IV, which
is a key component for the proposed DDNS method proposed
in Sec. V. For the validation of the proposed approach, we
consider a case study focusing on opportunistic vehicular data
transfer in Sec. VI. Finally, we summarize the key properties
and the limitations of the DDNS method in Sec. VII.

II. RELATED WORK

Methods for network performance analysis: Due to the
complex interdependencies of mobility and communication,
analysis and development of next generation Connected and
Automated Vehicles (CAVs) and ITSs require the joint con-
sideration of both domains [12], [13]. System-level network
simulation has become the main evaluation method for ve-
hicular communications systems, however the analysis carried
out in [6] shows that a high number of publications rely
on too simplistic parameter assumptions. Although a lot of
effort is spent on making these simulations more realistic [14],
the underlying issues are often only shifted to a different
domain. As a popular example, ray tracing-based analysis
[15] theoretically allows to obtain detailed insights into the
radio propagation characteristics within well-defined scenar-
ios. However, the required environment data – highly detailed
maps with obstacle shape and material information – is often
not available. In addition, increasing the level of detail within
those simulations inherently increases the computation time
and therefore limits its applicability for large-scale evaluations.

Machine learning: The application of machine learning
methods offers new potentials for modeling and analyzing mo-
bile wireless communication systems. While analytical models
fail to consider the complex interdependencies between the
considered variables in highly dynamic environments, those
impacts can be implicitly learned by machine learning-based
models. Giordani et al. [16] even envision future 6G networks
to bring intelligence to every terminal in the network. A
general summary about machine learning methods and their
application fields within wireless communication networks is
provided by [17]. In addition, Ye et al. [18] and Liang et
al. [19] present summaries with a deeper focus on vehicular
networks. Recently, the idea of learning the end-to-end be-
havior of communication systems has received great attention
within the wireless communications community [20]. First ap-
proaches, which focus on learning the physical layer behavior,
have been proposed by Ye et al. [21], Dörner et al. [22],
and Aoudia et al. [23]. By interpreting the communication
system as an autoencoder, the behavior can be learned in
a supervised manner based on Stochastic Gradient Descent
(SGD) without requiring channel models for the physical layer
interactions. The work presented in this manuscript can be
regarded as a logical continuation of the emerged research
field. In contrast to the state-of-the-art work, we focus on
learning the behavior at the application layer, which is subject
to additional interdependencies on the different layers of the
protocol stack.

Anticipatory communication: In previous work, we have
explored network quality-aware channel access [24] and have
demonstrated the massive potentials of using data rate predic-
tion for optimizing the resource efficiency of delay-tolerant
vehicular data transmissions [10], [3]. Client-based data rate
prediction within mobile cellular networks is a highly chal-
lenging task, as the resulting end-to-end throughput is influ-
enced by various external and internal factors. In addition to
mobility-related effects, which impact the channel coherence
time, cross-layer dependencies (e.g., the slow start mechanism
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of Transmission Control Protocol (TCP)) have great influence
on the observed end-to-end behavior [25]. Active prediction
methods monitor the data rates of ongoing data transmissions
with time series-based analysis methods. As an example,
Throughput prediction based on LSTM (TRUST) [26] brings
together mobility pattern identification with TCP data rate
prediction based on Long Short-term Memory (LSTM) meth-
ods. In contrast to that, passive approaches only rely on
measurable network quality indicators without introducing
additional traffic themselves. In this paper, we focus on the
passive measurement technique due to its wider acceptance
within the research community, its better resource efficiency
and its inherent capability of making predictions in an-hoc
manner. The authors of [27] analyze online data rate prediction
based on a large data set for two different MNOs in a
highway scenario. Similar to Samba et al. [28], the highest
prediction accuracy is achieved with a Random Forest (RF)
regression model. However, the resulting prediction accuracy
is relatively low, as the end-to-end prediction is solely based
on network context indicators and does not consider features,
which are related to the cross-layer dependencies within the
protocol stack of the User Equipment (UE). Similar studies
are carried out by the authors of [29], which compare the
performance of the machine learning models Artificial Neural
Network (ANN), Logistic Regression (LR), Gaussian Process
Regression (GPR), and RF. Their findings conclude that these
classic machine learning models – with GPR and RF achieving
the highest accuracies – yield excellent prediction results,
which can be utilized by the MNO to optimize its network
processes.

Maintaining network quality data: While the mobile UE
is able to perform measurements of the network quality indi-
cators at its current location itself, it has to rely on estimation
methods for forecasting those indicators at future locations.
For this purpose, connectivity maps [30], [31] can serve as
a way for providing a data-driven method for maintaining
geospatially-aggregated network quality information. In [3],
connectivity maps are jointly used with mobility prediction
in order to schedule the time of vehicular sensor data trans-
missions with respect to the expected network quality on the
future route. Although it is possible to use and maintain these
data bases in a completely decentralized way – as people
often drive the same routes regularly – data freshness and the
grade of covered areas can be significantly increased through
exploitation of crowdsensing approaches [32]. In order to
increase the overall knowledge data base through using poten-
tially heterogeneous data from different sources, correlation-
based feature mapping [33] can be applied. As an alternative
to purely measurement-based approaches, the acquired data
can be exploited to optimize the parameterization of radio
propagation models. The latter are then exploited to estimate
the network quality at unobserved locations. In [34], Enami
et al. present Regional Analysis to Infer KPIs (RAIK) as
a method to forecast the Reference Signal Received Power
(RSRP), which exploits highly detailed Light Detection and
Ranging (LIDAR) environment maps for achieving highly
accurate estimations.
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Fig. 2. Overall system architecture model and information flow for data-driven
performance analysis and optimization. The dashed components are generated
only once during the initial setup phase and are reused in the following steps.

III. METHODOLOGY

In this section, the general DDNS approach is introduced
and the methodological aspects of the performance evaluation
of the proposed method are described.

A. Problem Definition and High-level Approach Description

The overall goal of the proposed data-driven approach is
to mimic the network behavior of a concrete real world
scenario. For this purpose, DDNS relies on replaying pre-
viously acquired context traces (e.g., the measured network
context indicators a vehicle has encountered on its trajectory)
which are utilized to analyze the end-to-end performance of a
novel anticipatory communication method based on machine
learning.

The logical information flow is illustrated in the overall
system architecture model in Fig. 2.

• Prediction model generation: In contrast to system-level
network simulations which model actual communicating
entities including their protocol stacks, the proposed
DDNS method relies on machine learning-based analysis
of the end-to-end behavior. Supervised learning is applied
to derive a deterministic prediction model which allows
to forecast the behavior of the considered end-to-end
indicator based on the provided context traces. In this
work, we focus on data rate prediction in vehicular LTE
networks. Since the resulting accuracy of the prediction
model is crucial for the achievable simulation accuracy,
this aspect is analyzed detailedly in Sec. IV.

• Derivation model generation: If a data rate prediction
model is applied in the real world, the actually achieved
measurement provides an immediately accessible ground
truth for assessing the prediction accuracy. As the defined
goal of the DDNS approach is to mimic the behavior of
the real world network, the model imperfections need to
be taken into account within the simulations. However,
since replaying the passive context traces implies to
perform data rate prediction on unlabeled data, a ground
truth is missing. For addressing this issue, a virtual
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measurement is derived within the DDNS by sampling
from the error distribution of the real world measure-
ments. For this purpose, a second machine learning model
is applied to transform the prediction model from the
deterministic to the probabilistic domain. This process is
further described in Sec. V.

• Performance evaluation: Finally, the performance eval-
uation is performed by applying the novel method on
the replayed passive context measurements. The resulting
end-to-end behavior is simulated based on the generated
machine learning models. Sec. VI illustrates the proposed
methodological approach considering a case study fo-
cusing on opportunistic data transmission in vehicular
networks.

B. Data Acquisition
For the later training of the machine learning models, a

comprehensive data set is obtained by performing real world
measurements in the public LTE network of the three German
MNOs. During the drive tests, every 10 s, a TCP-based data
transmission is performed with a random payload size in the
range of 0.1, 0.5, 1..10 MB in the uplink and in the downlink
transmission direction. Furthermore, passive measurements of
network quality indicators are acquired continuously. The
data rate measurement is handled at a remote server. All
raw measurements can be accessed via [35]. The data trans-
missions are performed using multiple Android-based UEs
(Samsung Galaxy S5 Neo, Model SM-G903F), which execute
the developed measurement application1. The real world drive
tests are carried out in multiple scenarios, which differ with
respect to the velocity range and the building density: campus
(3 km), urban (3 km), suburban (9 km), and highway (14 km).
Each track is driven ten times. In total, 12938 transmissions
(58.45 GB of transmitted data) are performed on a total driven
distance of 287 km.

C. Data Analysis
The machine learning-based data analysis is carried out with

Waikato Environment for Knowledge Analysis (WEKA) [36]

1Measurement software available at https://github.com/BenSliwa/DDS
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and LIBSVM [37]. In order to automatically generate online
prediction models as C++ code from the abstract WEKA
results, we created a dedicated interface application, which is
part of the supplied software package. If not stated otherwise,
all presented data analysis results are 10-fold cross validated.

IV. CLIENT-BASED DATA RATE PREDICTION

This section discusses the prediction of the end-to-end data
rate in uplink and downlink direction in multi-MNO networks.
The availability of reliable prediction models is one of the
foundations of the proposed DDNS approach, which is further
discussed in Sec. V.

Predicting end-to-end performance indicators is a regression
task, where a model f is trained to learn the relationship
between a feature set X and a labeled data set Y. After the
training phase, the model can be utilized to make predictions
ỹ on new data x such that ỹ = f(x).

The overall architecture model of the machine learning-
based data rate prediction process, which is conducted in this
paper, is illustrated in Fig. 3. In the following evaluations,
the feature set X is composed of nine features from different
logical context domains:

• The application context consists of the payload size of
the data packets, which are transmitted via TCP.

• The channel context is formed by the passive LTE
network quality indicators RSRP, Reference Signal Re-
ceived Quality (RSRQ), Signal-to-interference-plus-noise
Ratio (SINR), Channel Quality Indicator (CQI), Timing
Advance (TA) and the carrier frequency of the serving
evolved Node B (eNB).

• The mobility context is represented by the vehicle’s
velocity and the current cell id.

During the training phase, the resulting data rate of the active
transmissions is utilized as the labeled data set Y. The actual
regression task is performed by multiple machine learning
models, which were tuned in a preparatory step.

• Artificial Neural Network (ANN) [38], where a deep
neural network with two hidden layers (10 and 5 neurons)
showed the highest prediction accuracy. Learning rate
η = 0.1 and momentum α = 0.001 were optimized based
on an evolutionary algorithm.

• Classification And Regression Tree (CART)-based mod-
els: Random Forest (RF) [39], which consists of 100
random trees of maximum depth 20 and M5 Regression
Tree (M5) [40].

• Support Vector Machine (SVM) with Radial Basis
Function (RBF) kernel [41] trained with Sequential
Minimal Optimization (SMO) regression.

For completeness, it is remarked that other regression
models such as k-Nearest Neighbors (KNN) and LR were
also considered during the initial model exploration phase.
However, as those approaches did not reach a performance
level comparable to the other – and more widely used – data
rate prediction models, they were excluded from the deeper
evaluations. The interested reader is forwarded to [42], [29]

As a statistical metric for the model performance and for
allowing a comparison to related work (e.g., [28], [27]), which
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TABLE I
COEFFICIENT OF DETERMINATION (R2) FOR DIFFERENT MACHINE LEARNING MODELS AND DATA AGGREGATION GRANULARITIES.

MNO A MNO B MNO C
Data ANN M5 RF SVM ANN M5 RF SVM ANN M5 RF SVM

U
pl

in
k MNO 0.685 0.754 0.8 0.71 0.46 0.658 0.707 0.594 0.69 0.779 0.82 0.728

Scenario 0.729 0.779 0.806 0.683 0.49 0.572 0.633 0.555 0.489 0.64 0.686 0.572
eNB 0.578 0.724 0.731 0.592 0.285 0.432 0.456 0.44 0.384 0.57 0.604 0.512
Cell 0.532 0.687 0.715 0.58 0.275 0.412 0.444 0.397 0.355 0.505 0.505 0.424

D
ow

nl
in

k MNO 0.499 0.603 0.591 0.612 0.524 0.584 0.648 0.578 0.41 0.504 0.552 0.531
Scenario 0.551 0.62 0.615 0.627 0.321 0.491 0.541 0.496 0.265 0.386 0.422 0.41
eNB 0.34 0.551 0.552 0.58 0.263 0.317 0.357 0.362 0.151 0.323 0.334 0.361
Cell 0.3 0.564 0.503 0.555 0.258 0.325 0.379 0.372 0.19 0.296 0.306 0.294

ANN: Artificial Neural Network, M5: M5 Regression Tree, RF: Random Forest, SVM: Support Vector Machine

0 10 20 30 40

Predicted Data Rate [MBit/s]

0

10

20

30

40

M
e

a
s
u

re
d

 D
a

ta
 R

a
te

 [
M

B
it
/s

]

Campus

Suburban
Urban

Highway

(a) MNO A (Uplink)

0 10 20 30 40

Predicted Data Rate [MBit/s]

0

10

20

30

40
M

e
a

s
u

re
d

 D
a

ta
 R

a
te

 [
M

B
it
/s

]

(b) MNO B (Uplink)

0 5 10 15 20 25 30 35

Predicted Data Rate [MBit/s]

0

5

10

15

20

25

30

35

M
e

a
s
u

re
d

 D
a

ta
 R

a
te

 [
M

B
it
/s

]

(c) MNO C (Uplink)

0 10 20 30 40

Predicted Data Rate [MBit/s]

0

10

20

30

40

M
e

a
s
u

re
d

 D
a

ta
 R

a
te

 [
M

B
it
/s

]

(d) MNO A (Downlink)

0 20 40 60 80 100

Predicted Data Rate [MBit/s]

0

20

40

60

80

100

M
e
a
s
u
re

d
 D

a
ta

 R
a
te

 [
M

B
it
/s

]

(e) MNO B (Downlink)

0 5 10 15 20 25 30 35

Predicted Data Rate [MBit/s]

0

5

10

15

20

25

30

35

M
e

a
s
u

re
d

 D
a

ta
 R

a
te

 [
M

B
it
/s

]

(f) MNO C (Downlink)

Fig. 4. Measured transmission profiles for RF-based data rate prediction in uplink and downlink direction in different evaluation scenarios.

consider the same performance indicator, the coefficient of
determination is analyzed. It is calculated as

R2 = 1−
∑N
i=1 (ỹi − yi)2∑N
i=1 (ȳ − yi)2

(1)

with ỹi being the current prediction, ȳ the mean of the
measurement and yi the current measurement. The R2 de-
scribes the amount of the response variable variation, which
is explained by the derived regression model.

A. Comparison of Different Prediction Models and Training
Data Granularities

In the first evaluation, the overall training data set is split
into various subsets in order to find the most usable data
aggregation granularity within the trade-off between using a
higher amount of training data – e.g., a single global data set

per MNO– or focusing deeper on the infrastructure-specific
aspects, which would imply to utilize many local data sets. In
addition, it is analyzed, which regression model achieves the
highest prediction accuracy and will be utilized in the further
evaluation phases.

For both transmission directions, all regression models are
trained on all data subsets, which are composed as follows:

• MNO (3 sets): Global data set per MNO
• Scenario (12 sets): Evaluation track-specific data aggre-

gation (campus, urban, suburban, highway)
• eNB (105 sets): Data aggregation based on the eNB id
• Cell (220 sets): Data grouping based on the cell id

Tab. I summarizes the R2 results of the resulting prediction
performance for all variants.

Overall, it can be seen that the highest prediction accuracy
is achieved with the CART-based models RF and M5, which is
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confirmed by the findings of related performance evaluations
[28], [27]. As pointed out in the analysis of [10], in many
cases, a single network quality indicator has a dominant impact
on the resulting data rate under well-defined conditions. While
the SINR is an important indicator within the cell center
region, the RSRQ has a major impact on the considered end-
to-end indicator at the cell edge. The regions themselves can be
estimated with the RSRP which is depending on the distance to
the serving eNB. Since the CART models provide a scope-wise
feature hierarchy within their model structure, they are able to
represent these conditions in their native model architecture.

In addition to the achieved accuracy, a great advantage of
the CART-based models is that they can be implemented in
a highly resource efficient way using simple if/else state-
ments. Within the online application of the trained models, the
execution time for making predictions is nearly negligible. On
the considered Android platform, the average online execution
time per single prediction is ∼ 0.1 ms for the trained RF. The
training of the 10-fold cross validation is performed in less
than a minute. Although the RF achieves the highest prediction
accuracy, it is remarkable that the much simpler M5 is often
only slightly less accurate. As an example for uplink prediction
of MNO A, the trained RF consists of 120533 leafs, which
contain numerical values. The trained M5 only consists of 11
leafs, which contain linear regression models. The lightweight
model size of the M5 can be exploited for enabling the
usage of machine learning even on highly resource constrained
systems (e.g., microcontrollers).

As the analysis shows, in most cases, the considered re-
gression models benefit more from using a higher amount of
training data than from increasing the grade of locality. Based
on the obtained results, the following evaluations focus on a
deeper analysis of the RF regression model with the global
data sets for each MNO and transmission direction.

B. Behavior Analysis of the Random Forest Data Rate Pre-
diction Model

The resulting prediction performance of the RF models of
each MNO in uplink and downlink direction is visualized in
Fig. 4. It can be seen that the behavior is highly depending
on the MNO and its provided coverage within each scenario.
For MNO A, the values are spread homogeneously for all
scenarios. In contrast to that, MNO B and MNO C have focus
regions, where a distinct level of performance is provided (e.g.,
MNO C only provides the highest performance in the urban
scenario). Overall the highest spread of the prediction error can
be observed in the highway scenario. Due to the high velocity
range up to 150 km/h, the channel coherence time is low
and handovers occur frequently. Apart from MNO A, which
achieves a similar performance in both transmission directions,
it can also be observed that the operators prioritize uplink
and downlink performance differently. MNO B is the only
operator, which provides downlink Carrier Aggregation (CA).
Therefore, the value range of the downlink measurements is
significantly larger than for the other MNOs.

Fig. 5(a) and Fig. 5(e) show the resulting R2 for cross-
MNO data rate prediction in uplink and downlink transmission

direction. It can be observed that the learned models are only
able to provide significant results for the networks of the MNO
they were trained on. It can be concluded that the measurable
context indicators have to be considered jointly with the non-
measurable MNO-specific configurations, which are implicitly
learned as hidden features.

Fig. 5(b)-(d) and Fig. 5(f)-(h) show the MNO-specific cross-
scenario prediction performance. For each MNO, a RF model
is trained on the data subset of each scenario and tested against
the other scenarios. For MNO A, the campus and urban subsets
achieve very good generalization for all test sets. However, the
data subsets for the highway and the suburban scenarios do not
generalize well. Considering Fig. 4(a) and Fig. 4(d), it can be
seen that the error spread is significantly higher for those two
scenarios than for the others. Therefore, prediction artifacts,
which arise from the low channel coherence time in the
challenging environments, limit the cross-scenario prediction
accuracy. In contrast to that, the other subsets succeed better
on learning the general impact between context indicators and
resulting data rate. In addition, the LTE cells in the campus
and urban subsets are more crowded than in the suburban
and highway subsets. Therefore, if only the latter scenarios
are considered, the machine learning model fails to learn the
interdependency between cell load – through measurements
of the RSRQ – and data rate for high load scenarios within
congested cells. For MNO B and MNO C, the cross-scenario
generalization is low, as the network performance itself is
highly scenario-dependent (see Fig. 4). Moreover, LTE cover-
age is not always guaranteed, e.g., MNO C suffers from poor
LTE coverage (76.25 %) in the campus scenario.

The results emphasize that meaningful data sets should
be composed of data from different heterogeneous scenarios
in order to achieve good generalization. However, it is not
reasonable to handle the different scenarios with scenario-
specific prediction models. In all cases, the global MNO data
sets achieve a higher mean R2 than the overall average R2 of
all individual scenarios.

C. Impact of Individual Features

For assessing the impact of individual features on the result-
ing prediction accuracy, the relative Mean Decrease Impurity
(MDI) [43] is computed for the different RFs. The results of
the evaluations are shown in Fig. 6.

It can be seen that the feature importance is depending on
the MNO. It is influenced by the unknown resource scheduling
policy and the unknown configurations of the hardware com-
ponents of the network infrastructure itself. While the carrier
frequency has a dominant impact on the uplink prediction
accuracy for MNO B and MNO C, the feature is less important
for MNO A. As the overlayed distribution of the observed
carrier frequencies shows, the UE is mostly connected to
1800 MHz cells in the network of MNO A. For the other
MNOs, the carrier frequencies are distributed more diversely.
In the downlink direction, the importance of the carrier fre-
quency is significantly reduced for MNO B and MNO C.
While it is possible that the eNBs employ different scheduling
policies for uplink and downlink, another explanation is the
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Fig. 5. Coefficient of determination (R2) results for the cross-MNO and cross-scenario prediction performance. The main diagonal elements show the 10-fold
cross validation results, all other elements have distinct training and tests sets.
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Fig. 6. Importance of individual features for the overall prediction accuracy.
The overlay shows the distribution of the eNB carrier frequencies for each
MNO.

traffic pattern of the cell users. As the downlink resources are
more often subject to resource competition [2], it is plausible
that the radio propagation-related impact is less significant
than the resource allocation process. For MNO A, the feature
importance is symmetrical for uplink and downlink.

In comparison to related work [28], [27], the achieved

overall prediction accuracy is significantly higher. While the
mentioned approaches only consider the network context fea-
tures for the prediction, other dominant influences such as the
payload size are not considered. The achievable average data
rate of a transmission is directly related to the payload size
as the latter has a strong impact on the resulting transmission
time and the behavior of the TCP slow start mechanism. In
the vehicular context, the UE moves during the transmission
process, which results in a low channel coherence time. While
larger payload sizes are beneficial from a transport layer
perspective [44], higher transmission durations increase the
probability of significant changes of the channel quality dur-
ing active transmissions. However, these complex cross-layer
interdependencies are implicitly considered by the applied
machine learning-based approach.

For completeness, it is remarked that the integration of
additional features (e.g., time of day) was analyzed in a pre-
evaluation step. As their consideration did not increase the
resulting prediction accuracy, they were removed from the
feature set. This behavior can be explained by their correlation
to already contained features. As an example, the time of day
can be used as an indicator for the load dynamics of the LTE
network [2], but similar information is provided by the RSRQ,
which is already contained in the feature set.

Within upcoming 5G networks, the Network Data Analytics
Function (NWDAF) [45] of the core network will act as
machine learning-based method for estimating the load level
of network slices. Although similar analyses can already be
performed by the UEs using passive control channel analysis
[46], providing the NWDAF information itself for the cell
users could greatly improve client-side data rate prediction
and would therefore significantly contribute to catalyzing
anticipatory mobile networking techniques.
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Fig. 7. Excerpt of the multi-MNO connectivity map for the urban scenario. For the data rate prediction a payload size of 2 MB is assumed. Due to spacial
limitations, the feature layers are only shown for the RSRP and the SINR. The actually applied connectivity map consists of nine different features. (Map
data: c©OpenStreetMap contributors, CC BY-SA).

D. Exploiting Crowdsensing Data For Network Quality Pre-
diction

The presented prediction methods rely on immediate mea-
surements of different context indicators, which allow to
derive data rate predictions only for the current vehicle lo-
cation. However, state-of-the-art anticipatory communication
techniques are able to significantly benefit from exploiting
knowledge about the network quality along the expected future
trajectory (e.g., for opportunistic data transfer [3], which is
applied for the DDNS validation in Sec. VI-A).

Since the vehicle itself is not able to measure the network
quality at the future locations, it has to rely on previously
obtained spatially aggregated data, which can be provided
by crowdsensing-based connectivity maps. Fig. 7 shows an
excerpt of the derived multi-MNO connectivity map for the
urban evaluation track. The connectivity map is organized into

three logical layers. The lowest layer consists of previous mea-
surements of the individual features of the prediction scheme.
Each cell of the connectivity map contains the aggregated
information of measurements, which were performed in the
same cell during previous drive tests or by other network
participants. For a defined cell size c and a given position
prediction P̃(t+ τ), the cell key k is computed as

k = b P̃(t+ τ)

c
c (2)

and utilized to access the context information C from the
connectivity map. The prediction layers maintain the pre-
diction results of the considered end-to-end indicators for
each MNO and are based on the feature layer information.
On the highest layer, the prediction results are exploited by
anticipatory networking techniques. In the considered example
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(a) Usage of GPR to derive a probabilistic description of the prediction
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(b) Application of GPR-based derivation modeling within DDNS.

Fig. 8. Example behavior of the GPR model, which is applied on the results
of the regression model to transform the latter from the deterministic to the
probabilistic domain. Virtual measurements are then generated by sampling
from the error distribution of the predictions.

shown in Fig. 7, the availability of multiple MNOs is exploited
for data rate-aware interface selection.

Apart from enabling context-predictive networking meth-
ods, the usage of connectivity maps for maintaining the
feature information has additional advantages. First, it allows
to separate measurement platform and application platform.
Although not all UE types and operating systems are able to
provide the same network quality indicators [44], anticipatory
networking methods can still exploit this information if it
has been measured by other UEs and is maintained by a
connectivity map. Second, it enables the usage of synthetic
mobility traces [47] for evaluating the to be analyzed method
at unobserved locations.

V. DATA-DRIVEN SIMULATION OF END-TO-END NETWORK
PERFORMANCE INDICATORS

The deterministic data rate prediction model is now ex-
tended by a method to consider model imperfections within the
simulations in order to achieve an accurate representation of
the real world behavior. Based on the analysis of the previous
section, we draw the following conclusions:

• In the vast majority of the evaluations, the RF regression
model achieves the most accurate prediction performance.
Therefore, RF is utilized for performing the data rate
predictions within the simulation.

• It is more reasonable to use only few models with
large data sets than a large number of highly-specified

prediction models (e.g., a single model for each eNB).
Therefore, the global data sets for each MNO and trans-
mission direction are used as the training data for the
prediction model.

In order to derive a probabilistic description of the deriva-
tions between ground truth and prediction model, a bayesian
machine learning model is applied on the resulting transmis-
sion profile of the prediction model. For this purpose, we
utilize a Gaussian Process Regression (GPR) [48] model as it
inherently provides favorable statistical properties which are
explained and exploited in the following paragraphs.

In the first step, the prediction results ỸRF of the RF model
are used as training data for the GPR model fGPR to derive a
predicted data set ỸGPR such that ỸGPR = fGPR(ỸRF).

Fig. 8 (a) shows an example for the resulting behavior
of the GPR model based on the overall uplink data set of
MNO A. For the predicted values ỸRF, the actual real world
measurements are centered around ỸGPR with a certain value
spread. The latter describes the derivations from the real world
behavior and is related to effects, which are not covered
by the prediction model. However, the confidence area of
the GPR allows to draw error-aware samples for each given
value of ỸRF, which follow the distribution of the real world
measurements. Assuming a gaussian distribution N of the
prediction errors, a sample ỹGPR can be obtained with the
standard deviation function σGPR as

ỹGPR(ỹRF) = N
(
ỸGPR(ỹRF),σ2

GPR(ỹRF)
)

(3)

For the considered data set, it can be seen that that the
prediction confidence is reduced for ỸRF < 3 MBit/s and
ỸRF > 33.5 MBit/s, which describes the edge regions of the
training set.

Due to the probabilistic properties of the sampling process,
it is possible that sample values exceed the value range of the
observed measurement values or are even assigned impossible
values (e.g., negative data rates). Therefore, a final filtering
step is applied in order to compensate these statistical effects.
The corrected sample value ŷ is finally computed as

ŷ =


min(YRF) ỹGPR < min(YRF)

max(YRF) ỹGPR > max(YRF)

ỹGPR else
(4)

An example application of this method within DDNS is shown
in Fig. 8 (b). In the anticipation phase, the vehicle predicts the
currently achievable data rate ỸRF based on the passive context
indicators. As a ground truth is missing in the data-driven
simulation, a virtual measurement ŷ is derived by sampling
from the confidence area of the predicted value.

For all considered MNOs, all uplink measurements were
re-generated with the proposed mechanism by simulatively
replaying the transmissions at their actual measurement loca-
tions under the measured network conditions. Fig. 9 shows the
resulting distribution of DDNS-synthesized data rate values. In
comparison to the real world measurements – see Fig. 4 (a)-
(c) – it can be seen that the process is able to provide a close
to reality representation of the data rate distributions, which
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Fig. 9. Synthesized transmission profiles based on the DDNS method by replaying the real world transmissions using RF-based data rate prediction and
GPR-based derivation modeling (uplink transmission direction). In consideration of the real world measurements in the same scenarios (see Fig. 4), it can be
seen that DDNS achieves a close to reality representation of the characteristics of all MNOs.

is able to capture the MNO- as well as the scenario-specific
characteristics.

VI. VALIDATION

In order to validate the proposed DDNS method, a case
study focusing on opportunistic vehicular data transfer is
carried out with real world field tests serving as a ground truth.
As a further reference for the performance of the proposed
DDNS method, we consider classical system-level network
simulation, which is based on DES. Within the simulative
evaluations, both approaches replay the trajectories of the
real world measurements of the highway and the suburban
scenario. The ultimate goal is to mimic the real world behavior
of the analyzed anticipatory communication method within the
simulation setup. The following evaluations show the results of
additional validation experiments, for which the measurement
data is not contained in the training sets of the machine
learning methods.

It is remarked that the proposed DDNS mechanism can
be exploited for catalyzing the development process of novel
anticipatory networking methods by applying a method-in-the-
loop approach. Within this work, the same C++ implementa-
tion code is used for the real world application and the DDNS
variant. The only required differences are the context inputs
(actual measurements in the real world, trace data in DDNS)
and the data transmissions (TCP access in the real world,
machine learning-based prediction for DDNS). Achieving a
similar level of code reusability is often not possible with
established network simulators, as the latter enforce the usage
of simulator-specific modules and interfaces.

A. Anticipatory Communication Methods for Opportunistic
Data Transfer

In the following, the anticipatory communication methods,
which are used as for the validation, are introduced. It is
remarked that these models have been published in earlier
work and are only applied here. Within this manuscript, the
focus of the scientific evaluations is on the achievable accuracy
of the simulation approaches and not on the performance of
the transmission methods.

Within typical vehicular Machine-type Communication
(MTC) systems, the radio channel is accessed in a periodic
way, e.g., sensor data is acquired and transmitted to a remote
server with a fixed transmission interval. Since this approach
does not take the current network quality into account, many
transmissions are performed during low radio channel quality
periods and are subject to undesired effects such as packet
loss. Due to the low resulting transmission efficiency and the
need for retransmissions, cell resources and energy are wasted.

In contrast to the periodic transmission approach, the
considered anticipatory communication methods Channel-
aware Transmission (CAT) and Machine Learning CAT
(ML-CAT) [10] access the channel in an opportunistic way
based on a probabilistic process. The schemes exploit the
dynamics of the network channel in the way that they delay
the transmission until sufficient radio channel conditions are
established. Acquired sensor data is buffered locally until a
transmission decision is made for the whole buffer. Due to
the introduced buffering delay, the method is intended for
delay-tolerant applications (e.g., vehicle-as-a-sensor) and does
not satisfy the latency requirements of safety-critical vehicular
communications.

With predictive CAT (pCAT) and Machine Learning
pCAT (ML-pCAT) [3], the general opportunistic transmission
schemes are extended by a predictive component, which
introduces a prediction horizon τ for forecasting the radio
channel quality at the future location P̃(t + τ). The latter
is obtained using trajectory-aware mobility prediction and is
exploited for obtaining the context data from a connectivity
map.

The different CAT variants can be configured to perform
the transmission scheduling decision with respect to different
metrics (e.g., SINR and predicted data rate). In the first step,
the measured metric value Φ(t) is transformed to a normed
metric value Θ(t) with

Θ(t) =
Φ(t)− Φmin

Φmax − Φmin
(5)

in order to allow the application of the basic CAT principles
with metrics that have different value ranges [Φmin,Φmax].
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Fig. 10. DDNS-based parameter optimization for sweet spot detection of anticipatory communication methods: Impact of the maximum metric value Φmax

on data rate and buffering delay. The errorbars show the 0.95-confidence interval of the mean value. For each setup, every value of Φmax represents the
aggregated performance of 500 different evaluation runs.

The transmission probability pTX(t) is then computed as

pTX(t) =


0 ∆t < tmin

1 ∆t > tmax

Θ(t)α·z else
(6)

with α being an exponent, which describes how much the
scheme should prefer high metric values and ∆t being the
passed time since the last transmission has been performed.
tmin is used to guarantee a minimum payload size and tmax

defines an upper bound for the buffering delay. z is a pCAT-
exclusive factor, which is responsible for taking the trade-off
between the current measurement Φ(t) and the anticipated
future network quality Φ̃(t+ τ) into account and is computed
as

z =

{
max(|∆Φ(t) · (1−Θ(t)) · γ)|, 1) ∆Φ(t) > 0

(max(|∆Φ(t) ·Θ(t) · γ)|, 1))−1 ∆Φ(t) ≤ 0
(7)

with ∆Φ(t) = Φ̃(t + τ) − Φ(t) and a prediction weighting
factor γ. The probabilistic transmission decision process itself
is triggered periodically (1 Hz in the following evaluations).

B. Reference Setup for System-level Network Simulation

As a reference for the methodological evaluation, a classical
system-level network simulation approach based on DES is
applied with Objective Modular Network Testbed in C++
(OMNeT++) 5.0 [49], INET 3.4 and SimuLTE v0.9.1 [7]. The
provided example scenario test_handover is taken as a
starting point for own extensions. As pointed out in Sec. I,
multiple simplifications are required for transforming the real
world scenario into a system-level simulation setup:

• Code extension: SimuLTE uses a single carrier frequency
definition for all eNBs within a scenario. Therefore,
the simulator implementation was extended to support
individual carrier frequencies for each eNB according to
their corresponding real world values.

• Unknown MNO configuration: Within the real world,
the resource scheduling mechanisms are MNO-specific
and unknown for the client devices. SimuLTE implements
proportional fair scheduling which might differ from the
mechanisms used by the considered MNOs.

• Simplified prediction model: As the simulator only
models a fraction of the features of the prediction model

– which is used by the metrics of ML-CAT and ML-
pCAT – a reduced version of the latter needs to be
applied within the simulative evaluation. For each MNO,
a machine learning-based prediction model is trained
using the payload size, SINR and frequency features for
uplink and downlink direction. Considering the feature
importance analysis in Sec. IV-C, it can be concluded
that multiple important impact factors are omitted with
these simplifications.

• Missing features: Since the applied transmission power
of the eNB is unknown, the SimuLTE default value is
applied for all base stations. In addition, there are no
implementations for CA and for the Transmission Power
Control (TPC) mechanism of the UE.

TABLE II
GENERAL PARAMETERS OF FOR THE VALIDATION.

G
en

er
al

Parameter Value
Data source 50 kByte/s
Evaluation interval 1 Hz
tmin 10 s
tmax 120 s
α 6
γ (pCAT) 2
γ (ML-pCAT) 0.5

Si
m

uL
T

E

Carrier frequency {900, 1800, 2100} MHz
Bandwidth 20 Mhz
UE transmission power 23 dBm
eNB transmission power 43 dBm
Channel model WINNER II Urban Macro
Other parameters test_handover defaults

In the following result analysis, the SimuLTE evaluations
will be referred to as DES. Tab. II summarizes the overall
parameterization of the transmission schemes and the DES
configurations.

C. DDNS-based Parameter Optimization

Since DDNS evaluations can be performed in a highly
resource-efficient way (see Sec. VI-E), even large-scale param-
eter studies that employ brute-force analysis over the whole
parameter space can be executed. In order to find the best
parameterizations for the considered anticipatory communica-
tion methods for each MNO and transmission direction, the
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Fig. 11. Comparison of the resulting end-to-end behavior of the different transmission schemes for the considered evaluation methods in uplink and downlink
direction. The goal of the DES and DDNS methods is to mimic the real world behavior of the different data transfer methods. The real world results consist
of additional data, which was obtained exclusively for the validation and is not contained in the training sets of the machine learning models. For a summary
of the key findings, see Fig. 12.

TABLE III
PARAMETERIZATION OF THE OPPORTUNISTIC TRANSMISSION SCHEMES.

MNO A MNO B MNO C
Φmax UL DL UL DL UL DL
CAT [dB] 30 30 30 30 30 30
pCAT [dB] 30 30 30 30 30 30
ML-CAT [MBit/s] 30 30 20 50 20 15
ML-pCAT [MBit/s] 30 30 20 50 20 15

UL: Uplink, DL: Downlink

impact of Φmax on the average resulting data rate and buffering
delay is analyzed in Fig. 10. As extremely high metric values
(e.g., SINR > 50 dB) do not occur in the real world data
set, the transmission schemes converge as they are determined

by the maximum buffering delay tmax which enforces the
transmissions after exceeding the timeout.

Every parameter configuration is evaluated based on 20 mo-
bility traces and each evaluation is repeated with 25 different
random seeds. In total, for each MNO, every transmission
scheme is analyzed in 50000 different evaluation runs. It is
obvious, that performing the same amount of evaluations in
the real world is practically impossible as it would imply to
analyze the data transfer schemes on a total driven distance of
more than 1.15 million km during more than 950 whole days.
Classical system-level network simulation would take more
than 2600 days with four computation cores (estimated based
on the findings in Sec. VI-E). However, the DDNS approach
requires less than three hours to finish on the considered
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evaluation system.
Tab. III shows the resulting MNO-specific parameterization

of the different transmission schemes, which is based on a
trade-off between data rate and buffering delay. Note that the
units for Φmax differ between the transmission schemes, as
CAT and pCAT perform their decisions with respect to the
measured SINR, while ML-CAT and ML-pCAT consider the
predicted data rate of the RF model. For all schemes, Φmin is
configured as the zero value of the corresponding unit. As a
reference, periodic data transfer with a fixed interval of 10 s
is considered.

D. Resulting Modeling Accuracy

Finally, the resulting modeling accuracy is investigated for
system-level network simulation and the proposed DDNS.
Fig. 11 shows the resulting end-to-end data rate values for
the different transmission schemes and MNOs in uplink and
downlink direction. Within the real world evaluation, several
characteristics by applying the different CAT variants can be
observed:

• The periodic transmission scheme provides the lower
baseline for the achievable data rate as the transmissions
are performed unaware of the network channel condi-
tions.

• The SINR-based CAT variants are able to increase the
resulting data rate significantly.

• With the introduction of machine learning-based channel
quality assessment (ML-CAT) the average data rate is
massively increased.

• By using context-prediction (pCAT and ML-pCAT), an
additional slight improvement is achieved.

For DDNS, the achievable modeling accuracy is directly
related to the prediction accuracy of the applied regression
models (see. Fig. 4). Therefore, MNO A achieves a signifi-
cantly more realistic representation of the real world behavior
for the uplink than for the downlink. As ML-CAT utilizes
data rate prediction within the transmission scheme itself, it
is subject to the accumulated error of the DDNS mechanism
and the prediction error of the ΦRF metric within the CAT
mechanism itself. ML-pCAT is furthermore impacted by the
prediction error for the anticipated data rate at the future
location P̃(t + τ). However, in the vast majority of all
evaluations, the impact of the aggregated prediction errors has
a lower impact on the results than the parameter uncertainties
of the DES.

A general observation for the DES results is that the differ-
ent MNOs behave very similar. As the MNO-specific config-
urations are unknown, the MNOs only differ with respect to
the eNB position and the applied carrier frequencies. However,
in the real world and in the DDNS evaluations, different
behavioral characteristics for the MNOs can be observed.
Although MNO A achieves the highest uplink data rates for
all transmission schemes in the real world, it has the lowest
throughput in the event-based simulation. Due to the high
prediction accuracy in the uplink for MNO A, ML-pCAT is
able to unleash its full potential in the real world and in the
DDNS evaluation, where it achieves an average data rate gain
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Fig. 12. Overall similarity between real world behavior and simulation mod-
els. The bars shows the correlation coefficient of the Empirical Cumulative
Distribution Function (ECDF) of DES and the proposed DDNS method with
the empirical measurements.

of ∼ 14 MBit/s. However, this effect is not captured by the
DES due to the applied simplified regression model and the
missing TPC. Contrastingly, it shows a similar behavior as for
the other MNOs. MNO B achieves the highest mean data rate
in the downlink by applying CA within some of the cells.
As this feature is not explicitly modeled within the SimuLTE
framework, the observed behavior differs significantly from
the real world. In contrast to that, the proposed DDNS
approach is able to implicitly learn the impacts of CA on the
considered Key Performance Indicator (KPI) directly from the
measurement data.

It can be seen that the DES fails to mirror the real world
behavior of the pCAT transmission scheme. Due to the context
prediction step, pCAT is highly sensible to the SINR dynamics.
In the DES, the network dynamics differ from the real world
due to the fixed eNB transmission power of 43 dBm. In the
real world, eNB position and transmission power optimization
are the results of a complex network planning phase, which is
performed with respect to the radio environment. In contrast
to that, the proposed DDNS does not require definitions or
value assumptions for the eNB parameters, it simply learns
the implications of the hidden variable on the considered end-
to-end KPI.

In order to assess the overall similarity between real world
and simulation, for each transmission scheme, a similarity
measurement is computed as the correlation coefficient of the
ECDFs of the real world measurement results and the corre-
sponding simulation results. Fig. 12 summarizes the average
behavior of DDNS and DES. It can be seen that the proposed
DDNS achieves a significantly higher modeling accuracy than
the DES method in all considered cases.

E. Computational Efficiency

In additional to the achievable modeling accuracy of the
obtained results, the computational efficiency of the simulation
setup itself is of great importance for the system optimization
phase. Fig. 13 shows the aggregated resulting computation
time per run for the different evaluations methods for the
considered transmission schemes. It can be seen that the
proposed DDNS is multiple orders of magnitude faster than
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Fig. 13. Comparison of the average computation times per scenario evaluation
for the proposed DDNS method and an established system-level network
simulation setup.

the DES approach. Although the application-level end-to-
end behavior of the data transfer method is investigated, the
DES spends most of its computation resources on simulating
processes that are only indirectly related to the considered
KPI. As an example, within the SimuLTE setup, neighboring
eNBs are interconnected based on X2 interfaces in order
to coordinate the cellular handover mechanisms which is
completely simulated during the evaluations. In consequence,
the event-based network simulation does not scale well when
the number of eNBs is increased. Contrastingly, the proposed
DDNS allows to derive results with a very high computational
efficiency as the machine learning-based modeling focuses
on the end-to-end behavior itself and treats the intermediate
modules as a black box.

VII. LIMITATIONS OF DATA-DRIVEN NETWORK
SIMULATION

Although the previous evaluations have pointed out numer-
ous advantages of using the DDNS method for analyzing
end-to-end network performance indicators, it needs to be
remarked that the proposed method has a defined application
range with specific limitations.

• Dependency to the prediction model: Since the ac-
quired real world data provides the foundation for the
evaluation scenario and the prediction models, the sig-
nificance of the DDNS results is severely depending on
the quality and the amount of the data (see Sec. IV-B).
Due to the focus on analyzing end-to-end indicators
in a data-driven way, the considered features need to
be carefully chosen in the data acquisition phase. In
contrast to system-level network simulation, it is mostly
not possible to alter the analyzed KPI without performing
additional measurements and model trainings.

• Scenario-oriented analysis: Replaying real world con-
text traces allows to analyze the performance of new
data transfer methods under close to reality network
conditions. However, the results are only significant for
the considered evaluation scenarios and the existing con-
figurations of the network infrastructure. Although this
limits the generalizability of the achieved results, it needs
to be remarked that system-level network simulators are
confronted with the same issues. In addition, the latter are
further impacted by simulator-specific feature derivations

(e.g., models implemented in DES A might be missing in
DES B) which limit the significance of cross-simulator
performance comparisons [6]. Open data sets serving as
reference scenarios could make a significant contribution
to improving the generalizability of the DDNS approach.
This way, a novel method could be evaluated using a wide
range of different MNO- and scenario- specific impact
factors.

• Black box approach: Although the applied black box
approach enables very fast result generation, the implied
encapsulation does not allow to inspect the behavior
of the intermediate layers. Therefore, DDNS is mainly
intended to be used as a powerful method for the system
optimization phase, when the most important features
and indicators have already been explored. However, for
analyzing the behavior of the lower layer protocols, ex-
isting end-to-end models for these layers (eg., [21], [22],
[23]) can be applied in a similar way. A possible future
extension might be a hierarchical DDNS setup, where
the prediction models of the upper layers leverage the
results of the lower layer prediction models as additional
features.

VIII. CONCLUSION

In this paper, we presented Data-driven Network Simulation
(DDNS) as a novel methodological approach for analyzing
anticipatory vehicular communication systems. The proposed
method exploits machine learning-based prediction models and
crowdsensing-enabled data acquisition for achieving close to
reality modeling of end-to-end network performance indica-
tors.

While classic DES-based system-level network simulation
suffers from a high scenario generation complexity due to a
large number of parameters uncertainties, DDNS is able to
learn their hidden interdependencies implicitly solely from
real world measurement data. The statistics of the derivations
between prediction model and real world behavior can be
learned by a dedicated machine learning model in order
to consider their implications as gaussian noise within the
simulative evaluation phase.

Applying DDNS to model the behavior of cellular commu-
nication systems requires to train individual models for each
MNO. Although machine learning-based data rate prediction
is able to consider the effects of cross-layer dependencies,
the resulting end-to-end behavior is significantly depending
on unknown MNO-specific configurations (e.g., the resource
scheduling mechanisms).

As it was shown in the proof-of-concept validation focus-
ing on anticipatory vehicular data transmission, the proposed
DDNS method is able to achieve more realistic end-to-end
results with a significantly higher computational efficiency
than the reference system-level network simulation setup.

In future work, we want to further exploit crowdsensing-
based data maintenance for keeping the simulation data con-
sistent with the real world. By introducing online learning
capabilities in the regression phase, an up-to-date digital twin
of the real world network could be achieved, which would be
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able to autonomously learn and consider new technological
developments (similar to CA as discussed in Sec. VI-D).
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