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Abstract: Ultra-wideband based localization technologies gained more and more attention over
the recent years. Most of the predominant research focusses on two-way ranging based system
topologies that feature limited multi-user scalability. This work aims to improve the accuracy
and robustness of a highly scalable control-grade time-difference of arrival based localization
system. The specific goal addressed in this work is to improve the robustness under non-line-
of-sight conditions using ultra-wideband specific signal quality assessment and inertial sensor
fusion. The accuracy of the proposed method is experimentally analyzed in two experiments.
One experiment evaluates the performance under best-case conditions. A second experiment
introduces strong interference through moving assets. Here, an accuracy improvement of over
60 % could be achieved compared to previous results. In order to relate those results, an
experimental comparison to a widely used angle of arrival capable state of the art ultra-wideband
localization system is made. It could be shown that the proposed method is more accurate than
the state of the art in the strong interference scenario.
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1. INTRODUCTION AND RELATED WORK

The accuracy of ultra-wideband (UWB) localization sys-
tems is limited by the quality of their time of arrival
(TOA) estimation. As pointed out by Vossiek et al. (2003),
the wider field of wireless positioning faces a technology
barrier: limited accuracy keeps it from being applicable to
areas like automation and control. Such applications also
impose significantly higher requirements on the reliability
and robustness of positioning systems. This work aims to
further improve the previously developed time-difference
of arrival (TDOA)-based UWB localization system AT-
LAS through the integration of inertial measurement unit
(IMU) data at the tags and signal quality assessment
(SQA) at the anchors.

Most prior research uses two-way ranging (TWR) based
approaches to measure the round-trip time (RTT) and
calculate the distance between the nodes that are to be
localized. Since this procedure requires a sequential mes-
sage exchange between the nodes, the channel capacity
and therefore the location update rate and number of total
nodes is severely limited, see Jiang and Leung (2007). The
idea of integrating IMU data with UWB is not new: Hol
et al. (2009) proposed tightly coupled UWB/IMU pose
estimation using a high-quality IMU and a commercial
UWB system. Nyqvist et al. (2015) proposed integrating
monocular vision data and fusing it with IMU and UWB
readings. Both systems, however, require a side-channel for
the transmission of the necessary IMU/vision information
to the localization system. Hartmann et al. (2016) eval-
uate the concept of using additional signal quality data.

Fig. 1. Illustration of the proposed concept. The local-
ization filter is augmented with inertial measurement
and signal quality data to improve the robustness.

Although the signal quality data helped to improve their
results, only the ranging error of TWR-based systems was
analyzed.

The approach proposed in this work uses inertial sensing
to augment position estimation with acceleration data and
to supply orientation measurements in order to achieve full
6D pose tracking. The IMU-based orientation is estimated
locally using an embedded filter developed by Madgwick
et al. (2011). We integrate the resulting orientation and
acceleration information as payload into the UWB proto-
col. We further assess the arrival time measurement at the
anchors by considering the signal quality. In order to make
use of the additional signal quality data that is available
at many UWB receivers, a novel approach is introduced to
further increase the robustness of the localization. The ba-
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sic concept of the proposed approach is depicted in Fig. 1.
Integration of SQA into a TDOA-based topology with its
special requirements has, to the best of our knowledge, not
yet been conducted. To show the potential of the proposed
approach, this work further compares the results to a state
of the art commercial system.

Inspired by the availability of low-cost transceiver systems
and the opportunity of developing UWB localization to-
wards control-style applications, a wide set of different
topologies emerged, ranging from efficient TWR-based ap-
proaches, see Kwak and Chong (2010) to time-difference
of arrival (TDOA) solutions, which are most prominent in
well established commercial systems, see McElroy et al.
(2014). Previously, Tiemann et al. (2016) could already
show the potential of the localization topology proposed
in this work in a robot-specific competition conducted
by Potorti et al. (2017). The capability for control-grade
applications in ideal environments for UAV-based applica-
tions could be shown by Tiemann and Wietfeld (2017).
In addition to the traditional evaluation through pub-
lished experiments, competitions provide a comparable
basis in challenging environments, see Lymberopoulos and
Liu (2017).

2. PROPOSED APPROACH

The general system structure is described by Tiemann
et al. (2016). Therefore, only the extensions to the ex-
tended Kalman filter (EKF) based positioning filter are
described in this work.

2.1 IMU Data Fusion

To make use of the raw accelerations provided by the IMU
in the positioning filter, some scenario-specific preprocess-
ing is needed. This need is due to interfering signals such
as motor vibrations of tracked robots. Furthermore, mea-
surement noise should be filtered out as much as possible.
A well established filter for these approaches is the Butter-
worth low pass filter. The group delay of the Butterworth
filter is frequency selective and strongly proportional to
the filter order. The passband gain stability as well as the
slope of the falling edge are order-proportional as well. As
a consequence, filter parameterization is always a trade-off
between these aspects, which is depending on the tracking
scenario.

Information about a tracked objects acceleration is only
useful if it is provided with respect to a static frame
of reference. Because of that, a last preparative step is
necessary, in which pre-filtered accelerations are projected
from sensor coordinates to global coordinates. To do so,
the orientation of the sensor w.r.t. global coordinates is
required. A Madgwick filter running locally on the mobile
node is used for orientation estimation, see Madgwick et al.
(2011). The onboard IMU is sampled at a high rate which
is used to update the Madgwick filter. The UWB local-
ization typically has a lower update rate. In the proposed
system, we transmit the orientation data in the form of
quaternions within the UWB frames. The acceleration
information is low-pass filtered and then averaged over the
interval between transmissions. Further processing in the
EKF is therefore done using the latest orientation data
and filtered acceleration.

The position vector si = (x, y, z)T is tracked based on
a constant velocity model in the previous filter design.
This design is expanded to a second-order equation of
motion by integrating the pre-processed accelerations âi at
positioning timestep i. To do so, the control vector u i and
its related control-input model B i are formed. Equations
(1) and (2) denote the resulting movement model using
IMU data over the interval Ti.

ṡi = ṡi−1 + â i Ti (1)

Compared to the previous constant velocity model, the
filter is now able to react much faster to any movement
changes by considering the measured accelerations in form
of a second-order motion model.

si = si−1 + ṡi−1 Ti + â i
Ti

2

2
(2)

The process noise matrix Q i describes uncertainties of
the measured and preprocessed accelerations along the dif-
ferent axes, along with additional, application-dependent
uncertainties due to unmodeled, higher order, effects of the
actual movement.

2.2 Signal Quality Assessment

As previously noted, UWB localization is based on the
TOA t̂n,i of the individual frames at each anchor n. The
proposed approach uses a TDOA-based topology with
wireless clock synchronization among the anchor nodes.
The EKF observation vector z i contains range differences,
i.e. the difference between a tags distance ρ̂n from an
individual anchor and its distance to a reference anchor
ρ̂1. Ranges are based on measured TOAs and the signal
propagation speed c.

z i =

⎡
⎢⎢⎣

ρ̂2,i − ρ̂1,i
ρ̂3,i − ρ̂1,i

...
ρ̂N,i − ρ̂1,i

⎤
⎥⎥⎦ = c

⎡
⎢⎢⎢⎣

t̂2,i
t̂3,i
...

t̂N,i

⎤
⎥⎥⎥⎦− c

⎡
⎢⎢⎢⎣

t̂1,i
t̂1,i
...

t̂1,i

⎤
⎥⎥⎥⎦ (3)

The TOA range measurements ρ̂ are commonly modeled
as having an error εn,i to the true range ρn,i with an
independent normal random distribution, assuming that
errors at each anchor are uncorrelated, see Patwari et al.
(2005). We further assume that TOA measurement errors
have zero mean, i.e. the mean range is the actual range,
since all clocks in the system are periodically synchronized.

ρ̂n,i = ρn,i − εn,i εn,i ∼ N (0, σ2
n,i) (4)

Resulting range difference measurements form a multivari-
ate normal distribution, in which the variance of each
element is given by the sum of the contributing range
variances (individual anchor and reference anchor),

Var[ρ̂n,i − ρ̂1,i] = σ2
n,i + σ2

1,i (5)

while the variance of the reference anchor remains as
covariance between each pair of range differences.



Cov[ρ̂m,i − ρ̂1,i, ρ̂n,i − ρ̂1,i] = σ2
1,i (6)

The structure of the resulting observation noise matrix
Rr,i is shown in (7) for a set of N anchors.

Rr,i =

⎡
⎢⎢⎢⎣

σ2
2,i

σ2
3,i

. . .

σ2
N,i

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

1 1 · · · 1
1 1 · · · 1
...
...
. . .

...

1 1 · · · 1

⎤
⎥⎥⎥⎦σ2

1,i (7)

In order to assess the quality of the individual TOA
measurements, additional signal quality information from
the receiver is used. Here, a novel method is proposed,
combining two major indicators. Neirynck et al. (2015)
propose the ratio of the cumulated power of the received
signal correlated with the corresponding reference pulse
versus the first path power. This metric is used as an
indication for non-line-of-sight (NLOS) conditions that
may imply erroneous TOAmeasurements. In the following,
the NLOS indication value, which is a ratio of powers in the
logarithmic scale, will be denoted as q. The higher q, the
more likely is a NLOS condition and conclusively a higher
TOA error. The second metric is proposed by Hartmann
et al. (2016) to assess the quality of the measured TOA.
Here, the ratio of the measurement noise floor of the
leading edge detection against the first path power is
evaluated in h. The higher h, the better is the signal to
noise ratio of the received TOA.

This work proposes incorporating those two indicators
into the positioning algorithm to significantly improve
robustness. We integrate the signal quality assessment into
the measurement noise covariance matrix by forming a
weighting quotient. The quotient is calculated for each
anchor/TOA and every timestep i, as exemplary shown
by (8).

σ2
1,i ∼

q1,i
h1,i

(8)

This quotient serves only as a rough indicator of the actual
TOA variance. In this context, its main purpose is to create
weightings among the TDOAs. On the other hand, some
consistency among observation noise matrices needs to be
retained. Therefore, a regularization step is introduced as
denoted in (9).

Ri = α
Rr,i

||Rr,i||F
+

⎡
⎢⎢⎣

2 1 · · · 1
1 2 · · · 1
...
...
. . .

...
1 1 · · · 2

⎤
⎥⎥⎦β (9)

Here, the TDOA measurement noise matrix is scaled by
the inverse of its Frobenius norm and by a parameter α,

Table 1. ATLAS UWB Anchor Locations

anchor 1 2 3 4 5 6 7 8

x [m] -1.11 -1.17 1.20 3.54 3.54 3.42 1.20 -1.17
y [m] 0.00 -3.49 -3.49 -3.45 0.02 3.52 3.49 3.49
z [m] 2.05 0.29 2.43 2.55 2.08 0.28 2.16 2.17

Fig. 2. Experimental setup. Note that the tracked object is
equipped with a reference UWB tag, a self-developed
ATLAS UWB tag and optical ground-truth markers.

before being added to a matrix parameterized by baseline
variance β. Here, α determines the overall impact of low
signal qualities on measurement confidence. Parameter β
represents the range-variance of each tag under perfect
signal conditions, capturing further effects such as clock
drift between synchronizations. As shown in the following
experiments, the aspects introduced in this section lead
to much more accurate and robust positioning. The filter
reacts to varying channel conditions by prioritizing good
quality TDOAs over bad quality TDOAs.

3. EXPERIMENTAL EVALUATION

The performance of the proposed approach is evaluated
in an experimental setup where an object moving along a
fixed track is localized by our system and two existing ref-
erence systems. High accuracy measurements are obtained
using an Optitrack optical reference system equipped with
eight motion capture cameras and passive markers on the
tracked object at a rate of 120Hz. The second system used
for reference is a Ubisense D4 real-time localization sys-
tem (RTLS). In addition to TDOA, this system estimates
local angles of arrival (AoA) through the use of multiple
receivers in one anchor. Azimuth and elevation angle of the
arriving signal are processed with a mean update rate of
40Hz. The positions of the AoA-based UWB anchors are
denoted in Tab. 2. The positioning improvements detailed
in this work are implemented on the ATLAS TDOA-based
UWB localization system. It consists of eight anchor nodes
placed as listed in Tab. 1. The firmware of the individual
nodes was modified to process, filter, transmit and receive
the IMU data and additional UWB diagnostic information.
Decawave UWB transceivers and an InvenSense MPU-
9250 IMU are used in the ATLAS nodes. The overall
experimental setup is depicted in Fig. 2. Results are col-

Table 2. Reference System Anchor Locations

anchor 1 2 3 4 cal.

x [m] -0.94 3.25 -0.81 3.23 0.00
y [m] 3.41 3.38 -3.4 -3.41 0.00
z [m] 2.75 2.78 2.75 2.75 0.28

yaw [◦] -63.2 -122.5 62.8 113.4 0.0
pitch [◦] -32.7 -23.2 -31.8 -23.1 0.0



Fig. 3. Cumulative distribution function of the orientation
estimation error. Correlation between IMU estimated
and reference system estimated accelerations.

lected in multiple runs around the track during which
all three systems are tracking the object simultaneously.
The proposed positioning filter requires acceleration data
with respect to the global coordinate frame. Therefore,
the orientation estimation running locally on the node is
evaluated first. Here, the filter is initialized during start-
up and uses a Madgwick parameter of 0.04. The IMU is
sampled at 512Hz, while the orientation is transmitted
with an update rate of 128Hz. To filter the acceleration,
the Butterworth filter is parameterized for the given sce-
nario using a 2nd order and a cut-off frequency of 3Hz.
As depicted in Fig. 3, the orientation filter achieves good
agreement with the optical reference system.

Fig. 4. Time-series of the global frame acceleration estima-
tion on the IMU versus the estimation of the optical
reference system.

As a reference for global frame acceleration, the motion
capture positions are numerically differentiated. Although
only a low-cost IMU is used, the low-pass filtered accelera-
tion, which is used for further motion estimation, matches
the reference data over the test track as depicted in Fig. 4.
Since the third quantile is consistently below 6◦, it is
assumed that the orientation error’s contribution to the
uncertainty in the estimated global frame acceleration is
small. To qualify those results, Fig. 3 shows the correlation
between the estimated and the reference-based accelera-
tion. To compare overall system performance, we perform
an experiment of ten laps around the test-track. Different
localization algorithms, both for the AoA-based reference
system and ATLAS, are compared by feeding the collected
raw data into both systems’ post processing pipelines with
different parametrizations.

Fig. 5. Top-down trajectory of the experimental results
without strong interference. Note that all systems
suffer from minor reproducible systematic errors.

3.1 Best Case Evaluation without Interference

In order to evaluate the system performance of the ATLAS
localization system without strong interference, an exper-
iment in best-case conditions is performed. Each position
on the full track has a line-of-sight condition to each
individual anchor node. The vehicle on the test track is
performing ten repetitions of the track at an average speed
of 0.5m/s.

The resulting trajectories in the horizontal plane are
depicted in Fig. 5. The reference trajectory, obtained
through the optical reference system is depicted next
to the trajectory of the AoA-based reference system,
using its best performing filter by fusing TDOA and AoA
information. Next to that, the baseline ATLAS trajectory
using none of the improvements proposed in this paper and
using all proposed improvements is depicted. It is clearly
visible that the proposed filter improves the performance
of the ATLAS system significantly. The sensor fusion
enables the system to compensate large outliers and stay
close to the reference trajectory.

To further analyze this effect, a statistical evaluation
in the form of violin plots is depicted in Fig. 6. The

Fig. 6. Accuracy analysis of the proposed stages of im-
provement for the ATLAS UWB system versus the
AoA-based UWB system without strong interference.



Fig. 7. Introduction of strong interference through mobile
metal plates carried through the experimental setup.

different proposed improvements are depicted next to each
other. The accuracy improves from the original ATLAS
localization at 14 cm for the 3rd quartile to 12 cm when
using all proposed methods. In order to create a baseline,
we also evaluated the accuracy achieved with a state of the
art system. Here, the basic system without the special AoA
extension delivers a 3rd quartile accuracy of 17 cm. When
using only AoA it is almost as good as the pure ATLAS
localization at 15 cm. However, when combining TDOA
and AoA, the AoA-based system is slightly more accurate
than the improved ATLAS system at 12 cm. This is simply
due to the additional AoA information that comes at
the cost of using a multitude of the receivers at each
anchor and placing them at a distance that significantly
increases the anchor size. Furthermore, the error for the
AoA information increases with the physical distance to
the anchor nodes. A relatively small experimental setup
is considered in this case, the positive effect of the fusion
with AoA will decrease in larger setups though.

3.2 Evaluation with Strong Interference

For most real-life applications, interference in form of
non-line-of-sight or strong reflection is a practical issue.
The concept proposed in this work aims to improve the
localization performance in such scenarios. Therefore, the
experiment described in section 3.1 is repeated including
strong interference. Two persons are carrying steel plates
through the experimental setup covering individual anchor
nodes or the mobile node from multiple sides. This proce-
dure aims to mimic real-life usage of the system in indus-
trial environments where workers are carrying equipment

Table 3. Horiz. Positioning Error Quantiles

Q(50%)
[m]

Q(75%)
[m]

Q(90%)
[m]

Q(95%)
[m]

Q(99%)
[m]

ATLAS 0.142 0.233 0.423 0.602 1.021
ATLAS (R) 0.145 0.214 0.329 0.411 0.569
ATLAS (R,IMU) 0.128 0.201 0.329 0.402 0.566
ATLAS (R,SQA) 0.105 0.154 0.226 0.274 0.439
ATLAS (R,SQA,IMU) 0.103 0.144 0.205 0.252 0.418

Ref. (TDOA) 0.168 0.236 0.358 0.463 0.709
Ref. (AoA) 0.145 0.212 0.307 0.371 0.563
Ref. (TDOA,AoA) 0.110 0.153 0.198 0.242 0.466

Fig. 8. Time-series of the horizontal positioning error to
illustrate the effects of the proposed improvements.

or moving vehicles such as forklifts that are interfering
strongly with in-place localization systems.

To illustrate the effect of strong interference, a time-series
with horizontal positioning errors for each improvement
step is depicted in Fig. 8. The ATLAS localization without
interference mitigation suffers from the largest horizontal
positioning error. The new noise covariance matrix is elim-
inating these largest errors by removing the dependency on
a single reference anchor and distributing it upon all an-
chors. The IMU-based information is improving the results
slightly by integrating the knowledge about acceleration in
curved movements. The signal quality assessment is capa-
ble of eliminating most of the erroneous TDOA readings
and therefore improves the results significantly.

In order to quantify the effects of the individual improve-
ment steps, Fig. 9 depicts the distribution of horizontal
positioning error. It is clearly visible that the proposed
improvement steps have a significant effect on the local-
ization accuracy. As expected, the new noise covariance
matrix and the signal quality assessment have the largest
effect. The original localization has a 3rd quartile accuracy
of 23 cm. When using all improvement steps, the accuracy
can be improved to 14 cm, which is an improvement of
more than 60%. Although the AoA-based reference system
is using a wired clock synchronization in comparison to the
wireless synchronization used by the ATLAS system, its
performance in TDOA-only mode is effected significantly
under strong interference, with a 3rd quartile error at

Fig. 9. Accuracy analysis of the proposed stages of im-
provement for the ATLAS UWB system versus the
AoA-based reference system with strong interference.



23 cm. Even when fusing TDOA and AoA information for
localization its 3rd quartile error is above 15 cm.

The proposed improvements are capable of compensating
strong interferences through NLOS conditions induced by
large metal objects and persons moving in the localization
area. Although the state of the art AoA-based system
delivers a slightly higher accuracy in optimal conditions,
the proposed method is able to be more accurate in
realistic scenarios with strong interference. Furthermore,
in comparison to the AoA-based system, the proposed
approach is capable of a fully UWB-integrated 6D pose
estimation.

4. CONCLUSION AND FUTURE WORK

This paper evaluates the potential of improving TDOA-
based UWB localization through sensor fusion using IMU
data and signal quality assessment. The previous system
capable of only providing positioning data was enhanced
to a full 6D pose estimation by adding an inertial sen-
sor based filter running directly on the tag. The newly
gained orientation information is highly accurate with a
3rd quartile error lower than 6◦. The localization accuracy
of the proposed method was analyzed in two experiments,
with and without strong interference. It was found that the
proposed method was able to improve the localization ac-
curacy up to 60 % under strong interference. Furthermore,
the proposed approach was experimentally compared to
state of the art AoA-based systems achieving a comparable
performance in optimal conditions and outperforming the
AoA-based system in NLOS conditions. Future work will
focus on a more detailed channel response analysis of the
received TOAs to further improve the TDOA positioning
performance through machine learning. Additionally, an
advanced distributed wireless clock synchronization will
be designed, implemented and analyzed to increase the
system robustness in distributed setups.
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