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Abstract—Upcoming 5G-based communication networks will
be confronted with huge increases in the amount of transmitted
sensor data related to massive deployments of static and mobile
Internet of Things (IoT) systems. Cars acting as mobile sensors
will become important data sources for cloud-based applications
like predictive maintenance and dynamic traffic forecast. Due to
the limitation of available communication resources, it is expected
that the grows in Machine-Type Communication (MTC) will
cause severe interference with Human-to-human (H2H) commu-
nication. Consequently, more efficient transmission methods are
highly required. In this paper, we present a probabilistic scheme
for efficient transmission of vehicular sensor data which leverages
favorable channel conditions and avoids transmissions when they
are expected to be highly resource-consuming. Multiple variants
of the proposed scheme are evaluated in comprehensive real-
world experiments. Through machine learning based combina-
tion of multiple context metrics, the proposed scheme is able to
achieve up to 164% higher average data rate values for sensor
applications with soft deadline requirements compared to regular
periodic transmission.

I. INTRODUCTION

The deployment of autonomous cars will act as a catalyst for
data-driven sensor systems. Crowdsensing-based applications
such as road-roughness detection and distributed weather-
forecasting will achieve significant gains in the availability
and up-to-dateness of sensor data with the help of cars acting
as mobile sensor nodes. Those kinds of applications do not
have real-time requirements for the data, but soft deadlines,
where too old data is discarded. Consequently, upcoming 5G
networks will require mechanisms for dealing with a high
increase in the amount of transmitted MTC-data. In addition
to reliable data transfer, highly efficient data transmissions
mechanisms are required to keep the interference with H2H
communication as low as possible. In earlier work, we have
proposed the opportunistic transmission scheme Channel-
aware Transmission (CAT) [1] for Long Term Evolution
(LTE) cellular networks, which has been extended with a
predictive component to consider future channel conditions
with predictive CAT (pCAT) in [2]. Its general idea is to store
sensor data locally as long as the channel quality is low in
order to avoid packet loss and retransmissions. The buffered
data is sent to a cloud-server when the device is experiencing a
connectivity hotspot with very high channel quality. The actual
transmissions are triggered depending on a passive downlink
channel quality indicator. In this paper, we generalize the
principles and extend CAT with a generalized multi-metric
model for context-aware MTC in vehicular environments.
The paper is structured as follows. After presenting relevant

state-of-the-art work in this area, we present the analytical
model of the proposed probabilistic transmission scheme and
discuss methods for combining multiple transmission metrics
based on generic approaches and means of machine learning.
Afterwards, the setup of the experimental evaluation study
is introduced and finally the results are presented. In order
to guarantee a high level of reproducibility, we provide the
developed measurement software in an Open Source way as
well as the raw data obtained from our measurements.

II. RELATED WORK

Due to a constantly increasing amount of mobile traffic, an-
ticipatory and opportunistic data transmission approaches gain
greater attraction, especially for MTC. Therefore, researchers
have started to excessively analyze the performance of real-
life mobile networks to derive metrics and methods for the
optimization of versatile mobile applications or the network
itself at different system levels [3].

While many works address the optimization of the infras-
tructure side, e.g., optimizing the radio-resource scheduler
by forecasting the User Equipment (UE) traffic [4], [5] and
mobility [6], [7], numerous approaches focus on the UE side
as the main trigger of transmissions in a cellular network: With
knowledge of the UE trajectory, centralized approaches like [8]
incrementally generate maps of the link-quality at correspond-
ing locations. Such measurements, in conjunction with online-
learning algorithms, may be used to derive coverage maps
of a cellular network [9] and finally schedule transmissions
according to the current connectivity. Other researches propose
decentralized approaches with the focus on QoS and QoE
for continuous or buffered transmissions, e.g., video stream-
ing [10], [11]. Here, the throughput-measurements of recent
transmissions feed an adaption logic in the client to request
a dynamically-scaled quality of the content according to the
current link capacity.

For short transmissions, e.g. MTC, passive metrics become
more important since active probing is impractical in these
cases [12]. An empirical comparison of passive downlink
indicators like Received Signal-Strength Indicator (RSSI) and
Signal-to-Noise-Ratio (SNR) on the throughput in different
environments is addressed in [13]. In [14] the authors analyze
and identify the suitability of indicators like Reference Sig-
nal Received Power (RSRP) and Reference Signal Received
Quality (RSRQ) for estimations of the uplink connectivity at
different cell loads.
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Fig. 1. Example temporal behavior for periodic data transfer and the proposed
CAT-based scheme. CAT avoids transmissions during connectivity valleys and
transmits more frequently when experiencing connectivity hotspots

III. SOLUTION APPROACH

Regular transmission schemes for sensor data are mostly
periodic and do not consider the current channel quality
situation for timing the data transfer. Consequently, many
transmissions are performed with a low transmission effi-
ciency, require retransmissions and consume a lot of energy.
Moreover, channel capacity is occupied for a long time period
and is not available for other cell participants. It can be
concluded, that the determination of favorable transmission
times can have a significant impact on the overall system effi-
ciency. Consequently, connection hotspots should be exploited
whereas transmissions during connectivity valleys should be
avoided. In the following, we first present the analytical model
of the proposed probabilistic transmission scheme. Afterwards
different methods for combining the available indicators in
order to achieve a better measurement for the actual channel
quality are discussed. An example trace is shown in Fig. 1.
While the periodic transmission approach sends data regardless
of the current channel conditions, the proposed CAT scheme
avoids transmissions at bad channel conditions and sends data
with a higher frequency if the channel quality is high.

A. Analytical Model of the Transmission Scheme
The generalized model for CAT is shown in Eq. 1. Each

tdecision seconds, it computes the transmission probability
pΦ(t) for an abstract metric Φ which is specified by a
minimum value Φmin and a maximum value Φmax. Φ is
called conducive if the channel quality gets better with higher
values of Φ and harmful if it gets worse. Transmissions are not
performed if the time difference ∆t since the last transmission
is below a minimum value tmin and performed regardless of
the current metric value if ∆t exceeds a defined maximum
value tmax. The timeouts are used to specify the application re-
quirements in terms of packet size and deadline requirements.
If ∆t is in between those timeouts, a transmission probability
is computed depending on the current metric value Φ(t) with
the helper function Θ and Eq. 2.

pΦ(t) =

{
0 : ∆t ≤ tmin
Θ(Φ(t))α : tmin < ∆t < tmax
1 : ∆t > tmax

(1)

Θ (Φ(t)) =

{
Φ(t)−Φmin

Φmax−Φmin
: Φ is conducive

1−
(

Φmax−Φmin

Φ(t)−Φmin

)
: Φ is harmful

(2)

The metric is further characterized using a weighting exponent
α that controls the convergence speed of Φ towards Φmax

and specifies the impact of metric differences for the channel
quality. Fig. 2 shows the analytical transmission probability
with respect to the current metric value for different exponent
values.
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Fig. 2. Analytical transmission probability for CAT for different values of
the weighting exponent α.

B. Multi-metric Transmission

Cellular communication networks provide a wide range of
different network quality indicators that can be used on the
client side in order to evaluate the actual channel quality. In the
following, different generic and machine-learning based ap-
proaches for combining the different indicators are described.

1) Optimistic: The transmission probability is computed for
all considered metrics. As the resulting transmission probabil-
ity, the maximum value is chosen (Eq. 3) in order to leverage
connectivity hotspots.

popt(t) = max {pΦ1(t), pΦ2(t), ..., pΦn(t)} (3)

2) Pessimistic: The minimum value of all considered metric
is used as the transmission probability. This approach focuses
on avoiding transmissions during connectivity valleys.

ppes(t) = min {pΦ1
(t), pΦ2

(t), ..., pΦn
(t)} (4)

3) Weighted Mean: If knowledge about the impact of the
individual metrics on the overall performance is available, it
can be used to strengthen or weaken their weight.

pmean(t) =
1∑
gi

n∑

i=1

pΦi
(t) · gi (5)

4) Machine Learning based Datarate Prediction: With this
approach, the anticipated data rate is computed and used as the
decision metric for the transmission scheme. The processing
pipeline for the machine learning process is illustrated in
Fig. 3. The available context parameters are used as the fea-
tures and different learning models (Artificial Neural Network
(ANN), M5 Decision Tree (M5T), Support Vector Machine
(SVM), Linear Regression (LR)) are applied (cf. Tab. IV for
the performance comparison). During the training phase, the
measured effective data rate forms the label for the learning
process. In contrast to the other multi-metric approaches, also
the payload size of the current data packet is integrated into
the transmission decision.



TABLE I
PARAMETERS OF THE REFERENCE SCENARIO

Parameter Value
Sensor frequency 1 Hz
Sensor payload size 50 kByte
Transmission interval (periodic) 30 s
tdecision 1 s
tmin {10 s, 30 s}
tmax 120 s

IV. METHODOLOGY

In this section, we present the setup for our empirical study.
The default parameters are denoted in Tab. I.

A virtual sensor application is generating data packets
according to specified sensor frequency and packet size values.
The packets are buffered until a transmission decision is made
for the whole buffer and the data has been transmitted suc-
cessfully. For the performance evaluation, a periodic scheme
that uses tmin is used as the transmission interval is used
as a reference for the probabilistic model. Fig. 4 shows a
map of the evaluation scenario and consists of two connected
tracks with different characteristics. Track 1 is set up in a
typical suburban area with speed limitations ranging from 30
km/h to 70 km/h. Track 2 is mostly highway with a speed
limitation of 130 km/h. For most of the following evaluations,
data is aggregated from both tracks and separate discussions
of the tracks are performed when considered beneficial. For
each parametrization of the transmission scheme, 5 runs were
performed on each of the tracks. Overall, more than 4000
transmissions were performed on a total distance of more
than 1000 km. The measurements were performed in a public
LTE network. For the collection of network quality data as
well as mobility information, we developed an Android-based
measuring app featuring live visualization that is available as
Open Source 1 . The measurements were performed with a
Samsung Galaxy S5 Neo (Model SM-G903F). The raw data
of the measurements is provided at [15] as Open Access data.

1Available at https://github.com/BenSliwa/MTCApp
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Fig. 3. Processing pipeline for the machine learning based datarate prediction
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Fig. 4. Overview of the 23km long test route containing different street types
and speed limitations. (Map: c©OpenStreetMap contributors, CC BY-SA)

TABLE II
PARAMETERS FOR THE CONSIDERED METRICS

ΦRSRP ΦRSRQ ΦSNR ΦCQI ΦM5T

min -120
dBm

-11 dB 0 dB 2 0 MBit/s

max -80 dBm -4 dB 30 dB 16 {15, 18}
MBit/s

α 8 6 8 6 8
conducive true true true true true

Tab. II contains the parametrization for the considered
metrics. For ΦRSRQ and ΦCQI , the exponent α is chosen
lower as the value range is smaller.

V. RESULTS

In this work, the evaluation is focused on the application
layer throughput (referred to as the goodput) as a measurement
for the transmission efficiency and the age of the sensor data.
As discussed in [1], higher throughput values significantly
reduce the interference with other cell user as well as the
overall energy consumption of the mobile device.

A. Single Metric Transmission Schemes

The end-to-end goodput for the considered metrics is shown
in Fig. 5. All CAT-based metrics achieve significantly higher
goodput values than the periodic scheme. While the highest
gain is achieved for the SNR-based metric, it also shows the
highest variance. In many cases the reported SNR changes
significantly while the transmission is still being performed.
Since the selection of a transmission scheme is bound to the

requirements of the actual application, the resulting Deadline
Miss Ratio (DMR) values for three different generic applica-
tions are compared in Tab. III. The deadlines were chosen with
respect to realistic requirements of traffic management systems
as discussed in [16]. If the application does not have strict
deadline requirements, a higher tmin value should be selected
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Fig. 5. End-to-end goodput and sensor data age for the considered base metrics
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Fig. 6. Correlation of different indicators with the resulting end-to-end goodput. The plots were generated from the data obtained from the single-metric
CAT-based transmissions as well as from the periodic transmissions. The black curve shows the 0.95 confidence interval of the mean value.

in order to increase the minimal packet size and achieve a bet-
ter ratio of payload size and protocol overhead. The correlation
between the considered metrics and the achieved goodput is
shown in Fig. 6 for the acquired data from Sec. V-A. The
RSRP is strongly correlated with the resulting data rate if
the device is in the cell edge region. A breakpoint of the
curve can be identified at -90 dBm that separates cell edge
behavior from cell center behavior. After the breakpoint, its
meaningfulness is reduced to the increased interference with
other communicating devices. Since the plots only consider
the value of the Key Performance Indicator (KPI) for the
beginning of the transmissions, its meaningfulness is reduced
for longer transmission durations. This is even more dramatic
if the KPI itself has a high variance, as it is the case for the

SNR. The packet size has a high impact on the resulting data
rate as it controls the relation of payload and protocol over-
head. Two areas with different characteristics can be identified.
Up to approximately 2.25 MB, the protocol overhead has a
dominant influence and the goodput improves with higher
packet sizes. For bigger packets, the variance of the data rate is
highly increased, as the longer transmission duration increases
dependency to the channel variance. In the plot, both periodic
transmission schemes (tmin = 10, tmin = 30) can be clearly
identified, as they do not alter the payload size of the packets.
As a result of the correlation considerations, no single metric
is able to provide a robust measurement for the channel quality
in all considered situations.



TABLE III
RESULTING DEADLINE MISS RATIO FOR MULTIPLE APPLICATION

REQUIREMENTS

Deadline tmin Periodic ΦRSRP ΦRSRQ ΦSNR ΦCQI

δ1 = 30 s
10 s 0.012 0.119 0.099 0.281 0.279
30 s 0.034 0.285 0.263 0.464 0.48

δ2 = 60 s
10 s 0.001 0.046 0.029 0.139 0.186
30 s 0.015 0.109 0.082 0.257 0.44

δ3 = 120 s
10 s 0 0.01 0 0.017 0
30 s 0 0.021 0.012 0.014 0

δ4 = 180 s
10 s 0 0 0 0.004 0
30 s 0 0 0 0 0

B. Machine Learning Based Datarate Prediction

Prediction of the datarate is a regression task. Thus, we train
multiple regression methods and validate their performance
in 10-fold cross validation. During the training phase, the
transmission time and the payload size of the Hypertext
Transfer Protocol (HTTP) POST transmissions is monitored
and the passive quality indicators are recorded. The models
we compare are Artificial Neural Networks, Support Vector
Machine (using Polynomial Kernel), M5 decision tree and a
simple linear regression. The performance of the models is
measured using the test data fold in terms of correlation, mean
absolute error and root mean squared error. Results can be
found in Table IV. The highest prediction accuracy is achieved
for M5T which is the only machine learning model which
is considered for further evaluations. The performance of the
prediction model is visualized in Fig. 7 where measured data
rate and its predicted value are compared. For the proposed
transmission scheme, only the overestimation of the channel
quality is considered harmful as only a worst-case estimation
is required and underestimation will most likely even increase
the resulting data rate.

TABLE IV
PERFORMANCE OF REGRESSION MODELS: ARTIFICIAL NEURAL

NETWORK (ANN), SUPPORT VECTOR MACHINE (SVM), M5 DECISION
TREE (M5T), LINEAR REGRESSION (LR) COMPARED IN TERMS OF
CORRELATION, MEAN ABSOLUTE ERROR (MAE) AND ROOT MEAN

SQUARED ERROR (RMSE). BEST VALUES ARE HIGHLIGHTED.

Model Correlation MAE RMSE
ANN 0.83 1.62 2.07
SVM 0.80 1.61 2.13
M5T 0.86 1.33 1.81
LR 0.57 2.19 2.92

C. Multi-metric Transmission Schemes

Fig. 8 shows the performance evaluation for the consid-
ered multi-metric transmission approaches. For this evalua-
tion, the tracks are treated separately, as different behaviors
were detected during the measurements. The weighted mean
approach uses the same weights for all considered metrics
as they achieved similar data rate values in the single-metric
evaluations. It can be observed that the mean goodput for
the optimistic and weighted mean approach is below the
best single metric result which was achieved for ΦSNR. It
can be concluded that low values of a single metric can
be considered meaningful indicators for unfavorable channel
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Fig. 7. Measured data rate versus predicted data rate using the M5 decision
tree. Diagonal is highlighted in blue. Underestimations of the channel quality
are not considered harmful for the proposed transmission scheme as it only
requires a worst-case estimation.

connections. Contrastingly, high values of a single indicator do
not provide enough information for detecting the presence of a
connectivity hotspot. For the pessimistic approach, the results
differ significantly depending on the considered evaluation
track. While very high values are achieved for the highway
track (mean: 14.58 MBit/s), the scheme shows a similar
performance as the single-metric for the suburban track (mean:
11.16 MBit/s). The high rate of low Channel Quality Indicator
(CQI) values as shown in Fig 6 combined with the low
time variance due to relatively low velocity values results
in a transmission scheme, which is mostly controlled by the
transmission timeout tmax and not the actual channel condi-
tions. Therefore, another pessimistic transmission scheme is
introduced, which does not integrate the CQI information into
the transmission decision. As shown in the figure, the resulting
performance is similar for the two tracks (suburban mean:
12.63 MBit/s, highway mean: 12.65 MBit/s). In conclusion,
it is much more important to avoid transmissions during
connectivity valleys than to leverage connectivity hotspots.
The best performance is achieved with the machine learning
based approach which does not only achieve the highest mean
data rate (18.5 MBit/s for the highway scenario with Φmax=18
MBit/s) but also reduces the number of occurrences of low
data rate transmissions significantly. It is the only scheme that
is not only considering the network quality, but also the size
of the payload which has a decent influence on the achievable
efficiency as shown in Fig. 6. The tradeoff between goodput
and data delay can be controlled by the parameter Φmax.

VI. CONCLUSION

In this paper, we presented a probabilistic model for the
efficient transmission of sensor data in a vehicular context.
Its general goal is to find the optimal transmission time for
vehicular sensor data with respect to the channel conditions
in order to save communication resources and avoid retrans-
missions. In comprehensive field evaluations, the impact of
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Fig. 8. End-to-end goodput and sensor data age for the considered multi-metric transmission schemes (tmin = 30).

different network quality indicators serving as metrics for the
transmissions decision was evaluated. Although all considered
metrics are able to increase the resulting data rate significantly,
they differ in terms of variance and DMR. Through application
of a machine learning based combination of the available
network quality indicators, the average goodput can be fur-
ther improved significantly while the delay is only slightly
increased. Other variants of the proposed transmission scheme
can be considered depending on the DMR requirements of
the application. In future work, we want to further improve
the transmission scheme by taking interdependencies with the
transport layer protocols into account. Furthermore, we want
to enhance the accuracy of network quality estimation by
integrating knowledge about the cell capacity obtained from
passive control channel analysis as described in [17].
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