
Efficient and Reliable Car-to-Cloud Data Transfer
Empowered by BBR-enabled Network Coding

Johannes Pillmann, Daniel Behnke, Benjamin Sliwa, Matthias Priebe, Christian Wietfeld
TU Dortmund University, Communication Networks Institute (CNI)

Otto-Hahn-Str. 6, 44227 Dortmund, Germany
{johannes.pillmann, daniel.behnke, benjamin.sliwa, matthias.priebe, christian.wietfeld}@tu-dortmund.de

Abstract—Nowadays, vehicles are not only merely used as a
transportation medium, but also as a highly mobile Internet of
Things (IoT) node, collecting data from all types of sources.
The delivery of aggregated vehicle sensor data into the cloud
for further analysis is very fragile, as vehicles move fast in
their environment and channel conditions vary heavily. Next to
mastering possible packet loss, communication protocols need to
quickly adapt to the frequent data rate changes. Random Linear
Network Coding (RLNC) has been proven as an efficient and
robust mechanism for reliable data transfer especially on lossy
channels. In this paper, the authors extend the Scalable Network
Coding (ScalaNC) framework with the novel congestion control
Bottleneck, Bandwidth and Round-Trip Time (BBR) in order to
quickly adapt to the frequent changes in data rate and allow
effective transfer of high amounts of data from vehicles and into
the cloud. ScalaNC is validated in a Hardware-in-the-Loop field
test consisting of a Long Term Evolution (LTE) base station and
channel emulator.

I. INTRODUCTION

Todays vehicles are now being used as mobile sensor
networks and collection platforms in the context of the IoT
[1]. First data marketplaces are forming, e.g. the AutoMat
marketplace1, which aim at leveraging large-scale automotive
sensor data for big data evaluation and analytics [2]. With
an extensive amount of in-vehicle aggregated data, which
sums up to several gigabytes per day, data delivery becomes
more and more challenging. Vehicles move fast through their
environment and thereby channel conditions are difficult and
underly high frequent changes. Shadowing and multipath, next
other effects, have a strong influence on link quality causing
the available data rate to vary or even lead to data loss.

Since its first description in the year 2000, Random Linear
Network Coding (RLNC) has received a strong attention in
research as enabler of robust communication [3]. Starting point
for the research of RLNC was the butterfly topology, where
throughput could be increased significantly [4]. Practical ap-
plicability of Network Coding for wireless networks has been
proven in [5].

Within the scope of this work, we leverage the Scalable Net-
work Coding (ScalaNC) framework in order to enable reliable
car-to-cloud communication. ScalaNC leverages RLNC and
has been developed as part of the research project SecInCoRe2.

1http://www.automat-project.eu/
2http://www.secincore.eu/

In the past, the focus of ScalaNC laid on providing connectiv-
ity for highly available safety-critical systems. However, data
rates were not varying strongly. In order to adapt to the high
frequent data rate changes in Vehicle-to-X (V2X) scenarios, the
novel BBR Congestion Control Algorithm (CCA) is applied.

This paper is organized as follows: First, we analyze existing
approaches of RLNC as well as competitive CCAs in section
II. In section III we describe the system model, followed by
an experimental evaluation in section IV.

II. RELATED WORK

The improvement of car-to-cloud data transfer over mo-
bile cellular networks has been on focus of many research
projects in recent years. In order to fully exploit available
bandwidth, congestion controls have been optimized to meet
wireless network’s requirements. The authors of [6] analyze
the behavior of the five popular TCP CCAs CUBIC, NewReno,
Westwood+, Illinois and CAIA Delayed Gradient in LTE
networks. The study focuses especially on mobility scenario
and provides a deep analysis on the slow start behavior. The
work was picked up and refined in more detail in [7]. Both
studies either investigate the cases that the User Equipment
(UE) is either approaching, leaving or staying in constant
distance to the eNodeB. Even though they use a realistic
ns-3 simulation, it is difficult to judge if the results match
real driving conditions. The authors of [8] analyze the novel
BBR in comparison with CUBIC congestion control algorithm
during a highway drive test. Even though BBR [9] was
originally developed by Google for backends, it seems to be
also well suited for LTE application. The study shows that
BBR is able to ”ramp up” faster than CUBIC as BBR aims at
maintaining its self-inflicted Round-Trip Time (RTT) low. In
addition, the analysis showed that BBR uses only very small
queues in eNodeBs and makes BBR a good starting point
for future cellular networks congestion control algorithms.
BBR has also raised attention due to its exploitation in QUIC
[10], the UDP-based secure and reliable transport protocol for
HTTP/2. Therefore, BBR was chosen within the scope of this
work as CCA for reliable and efficient car-to-cloud transfer
with ScalaNC.

Network Coding has a wide field of applications and has
been analyzed in different network environments. Showing that
no excessive overhead is needed and that potential applications
for Network Coding exceed the basic example of butterfly



S
c
a
la

N
C

Application Layer

LTE Network Interface

Network Coding 
Encoder

Data Segmentation 
& Grouping

Output Buffer Queue

Network Socket 
OutputCWND

FEC

Transmission 
Management

Retransmission 
Handling

Loss Detection

BBR 
Congestion Control

RTO

SACK

Data Segments

Symbols

Data Stream

Datagrams

IP Packets

Fig. 1. Architecture model of the BBR-enabled ScalaNC solution approach

networks are provided in [11]. The applicability of Network
Coding (NC) on transport layer via Transmission Control
Protocol (TCP), accompanied with a detailed theoretic as
well as practical implementation, has been demonstrated in
[12] and [13]. Especially over wireless area network links
the throughput can be improved significantly [5]. In [14],
the usage of RLNC and User Datagram Protocol (UDP) for
reliable transport service was introduced and leads to improved
results.

III. SCALANC SYSTEM MODEL

Within the scope of this work, we extended the ScalaNC
framework [15] by the novel and efficient BBR congestion
control algorithm. The background of the development of
the ScalaNC framework was the need for an efficient and
robust communication of cloud-based emergency information
systems. Its design focus lies on high throughput, reliability
and real-time capability.

Fig. 1 shows the architecture of ScalaNC. Data is re-
ceived as byte-stream from the application layer. In order
to apply Network Coding the byte-stream first has to be
segmented into smaller chunks p1, p2, p3, . . . , each of length
d = 14500 Bytes. Afterwards, Network Coding encodes the
chunks. ScalaNC leverages the Kodo [16] library to apply the
Network Coding. Within the scope of the work, a generation
size of g = 10 Symbols was used, which results in a transport
layer payload of 1450 Bytes. This ensures that the maximum
segment size of lower protocol layers is not exceeded and
further packet fragmentation, e.g. on IP-layer, is avoided. The
encoded data is packed into UDP-Datagrams. UDP has the

advantage of being connectionless, which makes it beneficial
in combination with network coding. In comparison to TCP
it solves the problem of head-of line blocking. ScalaNC
implements the novel Bottleneck, Bandwidth and Round-Trip
Time [9] Congestion Control Algorithm in order to limit the
send rate. BBR tries to optimize its congestion window by
regulating the self-inflicted RTT as low as possible by not
exceeding buffer limits, while at the same time adapting to
the maximum bandwidth of the slowest link (the bottleneck).

Within the scope of this work, data is sent over LTE modem.
The ScalaNC framework runs on a Linux operating system
with kernel version 4.9.2.

Within ScalaNC data is acknowledged using selective ac-
knowledgments (SACK) on a per-generation basis. Acknowl-
edgments are leveraged in order to determine the RTT for the
BBR congestion control algorithm. Whenever the server has
successfully received a full generation it is acknowledged. Lost
data packages are detected by a) either receiving acknowledg-
ments of subsequently sent data or when b) Retransmission
Timeout (RTO) are triggered.

Upon retransmissions, a new generation symbol is created
from the encoder. Due to the underlying RLNC algorithm it is
only important for the receipient that the symbol is innovative
and has no linear depdency to previously received symbols
to be able to successfully decode the data. For comparison: in
TCP an exact copy of the lost package needs to be transmitted.
Therefore, this valueable network coding property is exploited
for Forward Error Correction (FEC), which is described in
full detail in the previous ScalaNC work [15]. When a certain
packet loss rate is detected, additional symboles are encoded
and sent, which provides the FEC.

IV. METHODOLOGY

For the evaluation and assessment of the ScalaNC, a
Hardware-in-the-Loop (HIL)-experiment was conducted. In a
HIL simulation, the device under test, in our case the ScalaNC
is, is put into an controlled hardware setup, which imitates
realistic conditions, but the full system is under control. In
order to provide a realistic parametrization, channel-quality
indicators were collected during a drive test covering both
urban and highway situations. During the HIL experiment, the
recorded values are replayed via a Channel Emulator and LTE
base station.

A. Experiment Setup

Fig. 2 shows the HIL setup and system model for the car-
to-cloud data transfer. Data is transferred from the client to the
server. On the client side, the data aggregation from the vehicle
is emulated in software. Subsequently, vehicle data is encoded
using the ScalaNC encoder as described in the previous section
III. Data is sent over Sierra Wireless MC7455 LTE modem.

The Radio Frequency (RF) section of the HIL setup consists
of a Rohde & Schwarz CMW 500 LTE base station as well
as an Elektrobit Propsim C8 radio channel emulator. Using
these devices in a laboratory together with the HIL simulation
controller provides the advantage of a full system under control



In-Vehicle Data 
Collection

Client

ScalaNC Encoder

LTE Modem

Data Emulation

Cloud
Processing

Server

Ethernet

ScalaNC Decoder

Car-To-Cloud Data Transfer

LTE Base Station

RF Link Ethernet

eNodeB

HIL Simulator Control
Vehicle State LTE Parameters

Channel Emulator

UL Channel

DL Channel

Fig. 2. Hardware-in-the-Loop (HIL) System Model for Evaluation of Network-Coding enabled Car-to-Cloud Communication

TABLE I
HIL PARAMETRIZATION FOR CAR-TO-CLOUD TRANSFER

User Equipment (UE) Value
Modem Sierra Wireless MC7455
UE Category 6
Supported LTE Release 11

Base Station Value
Equipment Rohde & Schwarz CMW 500
Carrier Frequency UL 806 MHz
Carrier Frequency DL 847 MHz
Channel Bandwidth 10 MHz
Duplexing Scheme Frequency Division Duplex
Allocated Resource Blocks 50
MAC Scheduling constant (single user scenario)
Modulation and Coding Schemes TBS-IDs 1 to 19
Radio Link Control Mode AcknowledgedMode
Antenna Scheme SISO

Channel Emulator Value
Equipment Electrobit Propsim C8
Signal to Noise Ratio (SNR) 0 to 30 dB
Vehicle Speed 0 to 140 km/h
Fading Model Extended Vehicular A [17]

in comparison to field tests. The LTE base station is connected
via ethernet to the server, which decodes and evalutes the
received data.

B. Parametrization

The car-to-cloud communication is evaluated using LTE.
The CMW 500 emulates the LTE network. It is operated in
a single-user scenario on LTE Band 20 (Uplink 806 MHz,
Downlink 847 MHz), which imitates one major German
mobile network operator. The modulation and coding scheme
and the transport block size ID (TBS-ID) selection aims
at maximizing the throughput in dependency of the current
channel quality indicators as described in detail in [18]. Table
I provides an overview on all HIL parameters.

The Propsim C8 channel emulator is able to control the
channel conditions. Therefore, Uplink (UL) and Downlink
(DL) channels are split using a RF circulator in order to

0 300 600 900 1200 1500
Time [s]

0

5

10

15

20

25

30

S
N

R
 [

d
B

]

0 300 600 900 1200 1500
Time [s]

0

20

40

60

80

100

120

S
p
e
e
d
 [

km
/h

] Urban environment

Highway driving

Fig. 3. Hardware-in-the-loop (HIL) parametrization for vehicle speed and
Signal-to-Noise (SNR) demands, which were recorded during a real drive
test.

emulate separate channel conditions. Afterwards, the SNR is
modeled by adding Additive White Gaussian Noise (AWGN)
noise until a targeted SNR is reached. Interference effects are
applied using the Extended Vehicular A model (EVA) [17].
The channel emulator requires as input values the target SNR
as well as the vehicle speed. In order to provide an realistic
simulation those values were recorded in a drive test using
the LTE modem. Fig. 3 shows the speed and SNR values,
which are used in the HIL experiment.

V. CAR-TO-CLOUD DATA UPLOAD RESULTS

For the evaluation of the BBR congestion control imple-
mentation in ScalaNC the HIL experiment was conducted, as
described in the previous section. Hereby, data was transferred



Fig. 4. Application layer throughput (goodput) and Signal to Interference
plus Noise Ratio (SINR) results of the conducted Hardware-in-the-Loop (HIL)
experiment

from the vehicle to the cloud. It was assumed that there is
always data to be transferred.

Fig. 4 shows the resulting application layer throughput
(goodput) over time. The theoretic bandwidth is plotted as a
reference. The limit was derived from the leveraged modula-
tion and coding scheme. The BBR congestion control adapts
to the available congestion bandwidth very well. Especially,
when there is nearly no packet loss, the channel bandwidth is
fully exploited. In situations with bad SINR, e.g. due to shad-
owing or interferences caused from high vehicle speed, packet
loss occurs and theoretic data rates diverge significantly from
the actual goodput. In those cases, lost packets and thereby
missing information for the network coding generations are
identified due to timeouts and afterwards retransmitted.

A presentation of the initial adaption to the available channel
bandwidth on smaller timescale is provided in Fig 5. The
plot shows the slow start of ScalaNC’s BBR implementation
in comparison to TCP BBR. For both cases the data rate
adapts within 0.2 s to 90 % of the available bandwidth.
The slight deviation at round 0.1 s is caused by due to
the RLNC generation based acknowledgments of ScalaNC.
In comparison to TCP BBR, ScalaNC waits for multiple of
10 ∗ 1470 Byte in order to increase its congestion window,
whereas TCP uses multiples of its maximum segment sizes.
However, the deviation is negligible on a large scale (> 1 s)
and leaves room for future improvements.

Fig. 6 shows a ScalaNC’s goodput in comparison to TCP
Cubic and TCP BBR. The TCP experiments were conducted

0.0 0.1 0.2 0.3 0.4 0.5
Time [s]

0.00

0.25

0.50

0.75

1.00

T
h
ro

u
g
h
p
u
t 

[M
b
p
s]

Bandwidth

ScalaNC BBR

TCP BBR

Generation based acknowledgements 
cause slight delay at initial slowstart

Fig. 5. Transport layer throughput of the initial slow start behavior of ScalaNC
BBR in comparison to TCP BBR

TCP CUBIC TCP BBR ScalaNC

0

2

4

6

8

10

Go
od

pu
t [

M
bp

s]

Fig. 6. Comparison of ScalaNC and TCP throughputs

without network coding with the same reproducible HIL
experiment as described in the above sections. As reference
measurement serves the Cubic CCA. Cubic is the most used
CCA as it is default on Linux as well as android devices. In the
HIL experiment an average goodput of 1.9Mbps as achieved.
When switching the CCA to the novel BBR the throughput
improves to an average of 2.4 Mbps, which is an increase
of 26.3 %. The cubic algorithm assumes the loss of a packet
as an indicator for a congestion event. Therefore, it reduces
its congestion window and sends less data. Especially for
wireless connections this leads to a bad performance, which
is reflected by the results in figure 6. BBR performs better,
because its congestion window is derived from an estimate of
the communication link’s bottleneck bandwidth. The estimate
is derived from the amount of acknowledged data as well as
the round-trip time. Therefore, BBR performs better, when
packet loss occurs on the communication link.

The same can be observed for ScalaNC. ScalaNC imple-
ments BBR and therefore benefits from the algorithm. In
addition it is able to apply forward error correction as well as
network coding, when packet loss is expected or occured. As a



result, ScalaNC achieves an average goodput of 3.0 Mbps. In
comparison to TCP cubic this is an improvement of 57.9 %.

VI. CONCLUSION

Within the scope of this work, the ScalaNC framework
was presented and evaluated. ScalaNC provides reliable and
efficient car-to-cloud data transfer. Hereby, ScalaNC leverages
Random Linear Network Coding in order compensate possible
packet loss. In order to adapt as good as possible to the
available car-to-cloud data rate the novel BBR congestion
control algorithm has been implemented. In order to evalu-
ate and assess the framework, a hardware-in-the-loop (HIL)
experiment was conducted, which consisted of a LTE base
station, a channel emulator and LTE cat. 6 modem. The
HIL experiment was parametrized using a realistic channel
conditions, which were previously recorded during a drive
test. By using the ScalaNC framework, the throughput can
be improved in comparison to a common TCP link.

ACKNOWLEDGMENT

This work has been conducted within the AutoMat (Automotive
Big Data Marketplace for Innovative Cross-sectorial Vehicle Data
Services) project, which received funding from the European Union’s
Horizon 2020 (H2020) research and innovation programme under the
Grant Agreement no 644657, and has been supported by Deutsche
Forschungsgemeinschaft (DFG) within the Collaborative Research
Center SFB 876 Providing Information by Resource-Constrained
Analysis, project B4.

REFERENCES

[1] M. Gerla, E. K. Lee, G. Pau, and U. Lee, “Internet of vehicles: From
intelligent grid to autonomous cars and vehicular clouds,” in 2014 IEEE
World Forum on Internet of Things (WF-IoT), March 2014, pp. 241–246.

[2] J. Pillmann, C. Wietfeld, A. Zarcula, T. Raugust, and D. C. Alonso,
“Novel common vehicle information model (CVIM) for future auto-
motive vehicle big data marketplaces,” in IEEE Intelligent Vehicles
Symposium., jun 2017.

[3] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung, “Network
information flow,” IEEE Transactions on Information Theory, vol. 46,
no. 4, pp. 1204–1216, Jul 2000.

[4] T. Ho and D. Lun, Network coding: an introduction. Cambridge
University Press, 2008.

[5] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” IEEE/ACM
Transactions on Networking, vol. 16, no. 3, pp. 497–510, June 2008.

[6] E. Atxutegi, F. Liberal, K. J. Grinnemo, A. Brunstrom, A. Arvidsson,
and R. Robert, “TCP behaviour in LTE: Impact of flow start-up and
mobility,” in 2016 9th IFIP Wireless and Mobile Networking Conference
(WMNC), July 2016, pp. 73–80.

[7] R. Robert, E. Atxutegi, A. Arvidsson, F. Liberal, A. Brunstrom, and
K. J. Grinnemo, “Behaviour of common TCP variants over LTE,” in
2016 IEEE Global Communications Conference (GLOBECOM), Dec
2016, pp. 1–7.

[8] F. Li, J. W. Chung, and X. Jiang, “Driving TCP congestion control
algorithms on highway,” Proceedings of Netdev, vol. 2, 2017.

[9] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and
V. Jacobson, “BBR: Congestion-based congestion control,” Queue,
vol. 14, no. 5, pp. 50:20–50:53, Oct. 2016. [Online]. Available:
http://doi.acm.org/10.1145/3012426.3022184

[10] R. Hamilton, J. Iyengar, I. Swett, and A. Wilk, “Quic: A UDP-based
secure and reliable transport for http/2,” IETF, draft-tsvwg-quic-protocol-
02, 2016.

[11] M. Medard, F. H. P. Fitzek, M. J. Montpetit, and C. Rosenberg, “Network
coding mythbusting: Why it is not about butterflies anymore,” IEEE
Communications Magazine, vol. 52, no. 7, pp. 177–183, July 2014.

[12] J. K. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network coding meets TCP: Theory and
implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
March 2011.

[13] C. Xu, P. Wang, C. Xiong, X. Wei, and G. M. Muntean, “Pipeline
network coding-based multipath data transfer in heterogeneous wireless
networks,” IEEE Transactions on Broadcasting, vol. 63, no. 2, pp. 376–
390, June 2017.

[14] P. Garrido, D. Gómez, J. Lanza, J. Serrat, and R. Aguero, “Providing
reliable services over wireless networks using a low overhead
random linear coding scheme,” Mobile Networks and Applications,
vol. 22, no. 6, pp. 1113–1123, Dec 2017. [Online]. Available:
https://doi.org/10.1007/s11036-016-0731-7

[15] D. Behnke, M. Priebe, S. Rohde, K. Heimann, and C. Wietfeld,
“ScalaNC - scalable heterogeneous link aggregation enabled by network
coding,” in 13th IEEE International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob 2017) - Fourth
International Workshop on Emergency Networks for Public Protection
and Disaster Relief (EN4PPDR’17), oct 2017.

[16] M. V. Pedersen, J. Heide, and F. H. P. Fitzek, “Kodo: An open and
research oriented network coding library,” in NETWORKING 2011
Workshops, V. Casares-Giner, P. Manzoni, and A. Pont, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 145–152.

[17] ETSI, “LTE; evolved universal terrestrial radio access (E-UTRA); user
equipment (UE) radio transmission and reception (3GPP TS 36.101
version 13.2.1 release 13), annex B.”

[18] B. Dusza, C. Ide, P. B. Bök, and C. Wietfeld, “Optimized cross-layer
protocol choices for LTE in high-speed vehicular environments,” in
2013 9th International Wireless Communications and Mobile Computing
Conference (IWCMC), July 2013, pp. 1046–1051.


