
Control Plane Fault Tolerance for
Resilient Software-Defined Networking based

Critical Infrastructure Communications
Fabian Kurtz, Dennis Overbeck, Caner Bektas, Christian Wietfeld

Communication Networks Institute, TU Dortmund University, Otto-Hahn-Strasse 6, 44227 Dortmund
Email: {fabian.kurtz, dennis.overbeck, caner.bektas, christian.wietfeld}@tu-dortmund.de

Abstract—Modern societies depend increasingly on Critical
Infrastructures (CIs) such as Smart Grids (SGs) or Intelligent
Transportation Systems (ITSs). These in turn rely on complex
monitoring and control functionalities, which themselves require
capable, flexible and robust communication infrastructures. As
dedicated networks and computing resources are associated with
high costs and time-consuming deployment, the upcoming fifth
generation of mobile communication (5G) aims to enable cloud-
based shared infrastructures via Network Function Virtualization
(NFV) and Software-Defined Networking (SDN). While NFV
separates hardware and logical functionalities, SDN abstracts
physical data packet forwarding from programmable network
control tasks such as routing. Thereby so called SDN controllers
are created, which simplify the integration of heterogeneous
technologies and enable the flexible addition of new features. Yet,
due to the controllers’ centralized nature a potential single-point-
of-failure is created. Thus we present a heartbeat-based approach
to SDN resilience, utilizing redundant controllers to address
CI communication requirements. An empirical evaluation, on
the example of particularly demanding SGs traffic, illustrates
reduced end-to-end failover delays, i.e. the duration cloud-driven
5G networks cannot process requests or changes.

I. INTRODUCTION

To improve quality of life and use resources efficiently, soci-
ety increasingly relies on CIs such as SGs. Stable operation of
these systems necessitates capable, flexible and highly reliable
cloud platforms and communication networks. In this context
SDN has emerged as a solution for managing Information
and Communication Technology (ICT). Contrary to traditional
networks, SDN separates all control functions, i.e. the Con-
trol Plane (CP) handling e.g. routing or prioritization, from
physical packet forwarding. Thereby a Data Plane (DP) is
created, in which routers and switches purely forward traffic
according to the rules stored in their forwarding tables. A
centralized SDN controller software configures theses tables
via the Southbound Application Programming Interface (API),
most commonly utilizing the OpenFlow (OF) [1] protocol. If
switches encounter a packet for which no table entry exists,
e.g. if new traffic flows enter the network, an OFPacketIn
message is sent to the controller. There a path appropriate
for the flow is calculated and installed in all relevant switches
via an OFFlowMod message. Moreover, as shown by Figure
1, an application plane is created. Here functionalities of the
controller, as well as those of services using the network,

exist. Thus new algorithms can be deployed independently of
hardware upgrades. Applications utilize the so called North-
bound API to directly transmit their requirements to the
SDN controller. Thereby the communication infrastructure is
automatically configured to meet application demands. Yet,
by centralizing control SDN creates a potential single-point-
of-failure, threatening network availability and reliability. This
also applies if the controller is realized as a NFV-based Virtual
Network Function (VNF) with a millisecond instantiation
time. Failures of the underlying hardware require the same
control plane recovery measures as without virtualization. If
the controller fails, existing DP flows cannot be modified while
new ones cannot be established. Although active flows are not
affected, the impact on CIs is severe as hard service level guar-
antees can no longer be enforced. Yet Wide Area Monitoring
Protection and Control (WAMPAC) in SGs continuously needs
to reconfigure the DP via the CP to successfully transmit grid
control messages for stabilizing the power grid. Consequently
CP failures endanger the entire CI’s, respectively cloud’s
availability. While SDN’s East-/Westbound APIs are designed
for interactions between multiple controllers, work in this
regard predominantly focuses on scalability. In contrast we
utilize this API to design and evaluate a controller failover
strategy on the example of SG requirements, which are among
the most challenging in terms of network recovery latency.

Wind Turbines

Hydroelectricity

SCADA

Southbound API
(e.g. OpenFlow)

Load
Balancing

Monitoring
Critical

Infrastructure
Control

Firewalling

Northbound API
(e.g. REST)

Control Plane Link
Data Plane Link

Application Plane Link

(homogen.)
ControllerControllers

(heterogen.)

East-
bound

API

West-
Bound

API

API:
Application
Programming Interface
REST:
Representational
State Transfer
SCADA:
Supervisory Control
and Data Acquisition

Figure 1: The Architecture of Software-Defined Networking

978-1-5386-4982-4/18/$31.00 c© 2018 IEEE

Published in: 1st IEEE 5G World Forum (5GWF 2018)
DOI: 10.1109/5GWF.2018.8516975

c© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
including reprinting/republishing this material for advertising or promotional purposes, collecting new collected works
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

http://dx.doi.org/10.1109/5GWF.2018.8516975

II. RELATED WORK

Originally developed for deployment in cloud datacenters,
SDN has become a key component of 5G networks, enabling
efficient management of all kinds of communication infrastruc-
tures. While various works dealing with resiliency of SDN
based networks are available, most focus on the DP, such
as [2], [3] or [4]. Papers which address CP robustness, i.e.
the SDN Controller, predominantly cover performance metrics
such as flow setup rates after failover [5]. However, the delay
incurred by CP failure mitigation strategies is rarely studied
and does not meet the demands of CI communication. Four
main approaches to CP resilience are discussed in literature,
as depicted by Figure 2. Voting algorithms can also be used
for ensuring CP redundancy. A set of controllers determines
the correct control decision either on a case-by-case basis or
elects a new primary in case the original fails. While robust
against even byzantine failures (i.e. if a devices sends differing
results to its peers), performance is reduced due to the complex
consensus finding process, c.f. [6] and [7]. A variation of such
voting systems is presented in [8], where redundant brokers
in the CP collect messages from all controllers and act only
on commands issued by a majority. In contrast, the strategy
refined in this work builds on a primary/secondary controller
cluster. Here at least two interconnected controllers (one in
hot-standby) run in parallel, perpetually synchronizing states
between internal databases. In case a device fails, the other
takes over, keeping the network responsive to changes. Recov-
ery delays observed in [9] and [10] are on the order of seconds
and thus too slow for use in CI. Common Address Redundancy
Protocol (CARP) [11] and its proprietary equal Virtual Router
Redundancy Protocol (VRRP) [12], as used by e.g. Openstack
Neutron [13], also utilize the primary/secondary paradigm. A
virtual, shared Internet Protocol (IP) address enables failover
between devices typically within seconds [14]. [15] presents
a variation of this scheme which utilizes SDN to improve the
duration of CP recovery. The primary/secondary approach can
also employ external databases, shared among controllers. This
trades synchronization for database replication overhead, as
shown by [16], [17] and [18].

Primary / Secondary Approach
(Internal Databases)

Primary / Secondary Approach
(External Databases)

Data Plane
Control Plane standby

active

Data Plane
Control Plane

Data Plane

Control Plane
Broker

active
standby

standby

Broker Based Approach

Data Plane
Control Plane

active
standby

standby

Election Based Approach

standby

active

Figure 2: Overview of SDN Controller Resilience Strategies

III. SOFTWARE-DEFINED NETWORKING FOR
CRITICAL INFRASTRUCTURES

This section introduces the demands of SG communications
and establishes our SDN controller resiliency concept for CIs.

A. Smart Grid Requirements
IEC 61850 [19], standardized by the International Elec-

trotechnical Commission (IEC), is a key SG communication
protocol. As shown by Figure 3, it provides three types of
messages. Settings are handled via Manufacturing Message
Specification (MMS) packets, while event notifications and
actions such as busbar switching are performed via Generic
Object Oriented Substation Events (GOOSE). Measurements
are sent via Sampled Values (SV) messages, e.g. to detect short
circuits for power line protection. Due to their importance for
SG stability, SV and GOOSE specify a maximum end-to-end
delay of 10 to 20ms (Type 1A-P1 and 1B-P2/3), regardless
of failures in the communication network. Hence, fault detec-
tion, switching to a backup SDN controller and finally fault
recovery have to be completed below these thresholds.

B. Concept & Implementation of the Resilient SDN Controller
To meet the requirements outlined, the primary-secondary

controller resilience strategy is refined. Failure detection is
realized via a heartbeat, e.g. controllers notify each other in
fixed intervals of their availability. If either fails, the heartbeat
or its corresponding acknowledgements are missing. False
positives, i.e. switching to a new primary without failure event,
are precluded via a detection multiplier. Hence a timeout is
triggered only after multiple lost heartbeat packets. Heartbeats
are sent via a dedicated link between controllers, avoiding
false positives due to high delays (e.g. caused by network
flooding). Furthermore, route calculation and failure detection
processes are decoupled and run in parallel to reduce recovery
delay. The heartbeat is sent via the control plane switch, as
any inter-controller link failures would otherwise result in two
active primaries, issuing ambiguous commands. Transitioning
delay from secondary to primary mode is dependent on the
backlog of unanswered OFPacketIn messages accumulated
during failover and verifying controller state against DP for-
warding tables. Further potential inconsistencies are avoided
by continuous synchronization. Such issues occur e.g. in case
the primary fails after it sent a OFFlowMod to the DP, without
updating the secondary, causing it to send potentially conflict-
ing instructions. Synchronization also allows replacing failed
devices without downtime, improving system availability.

Sampled Values
(SV)Application Layer

Generic Object-
Oriented Substation

Events (GOOSE)

Manufacturing
Messaging

Specification (MMS)

Transport Layer TCP

Data Link Layer Ethernet

Physical Layer Physical Medium

Ethertype

Packet Size [Byte]

Inter-Transmission-Time [ms]

Max. End-to-End Delay [ms]

64 to MTU

2 to 10

10 / 20

64 to MTU

~0.08 to 0.250

10 / 20

Network Layer IP

64 to MTU

2

1000

Figure 3: IEC 61850 - Message Types and Requirements

IV. TESTING SETUP AND EVALUATION SCENARIO

The testing setup consists of the following components:
Eight identical servers, based on Intel Xeon D-1518 Central
Processing Units (CPUs) (four cores at 2,2GHz) with 16GB
RAM and six 1GBase-T Ethernet Ports (two by Intel I210, four
by Intel I350). Ubuntu 16.04.3 LTS (v4.13.0-32-generic x86-
64 Kernel) is used as Operating System (OS) on all devices.
Figure 4 depicts the evaluation setup and scenario, as well as
the chain of events in case of a controller failure. Two devices
are used as hosts, exchanging traffic over the DP. This network
is formed by four computers configured as virtual switches
by running Open vSwitch (v2.8.2). To avoid any interference
of measurements on performance two additional networks are
available. The CP distributes the controller’s commands to the
DP, via a dedicated switch (Zyxel GS1900-24E). An additional
maintenance network serves to control experiments and collect
measurements. A fork of the open source Floodlight [20]
Java project, called Software-defined Universal Controller for
Communications in Essential SystemS (SUCCESS) [4], is
used as primary and secondary SDN controller. Developed by
the Communications Networks Institute (CNI) it specifically
targets CI communications and implements the resiliency ap-
proach under study in this work. To replicate the conditions of
the SG wide area protection use case, Host A sends IEC 61850
GOOSE messages to Host B with an Inter-Transmission Time
(ITT) of 10ms. For evaluation of the resiliency approach it is
necessary to trigger an event which involves controller inter-
action. Therefore each packet of the traffic flow is created to
not match any entry in the switches’ forwarding tables. Hence,
an OFPacketIn is sent to the controller, which then calculates
and installs an appropriate path. All devices of the testing
setup are synchronized via Precision Time Procotol (PTP)
[21] with a maximum clock deviation of 152µs, facilitating a
precise measurement of the sequence of events during failover.
Controller failures are induced by interrupting all its processes
on the corresponding server. Measurements are based on at
least 1000 runs to achieve sufficient confidence in results.

Host A
(IEC 61850)

Primary
Controller

Secondary
Controller

Control Plane
Switch (Redundant)Control

Plane

Data
Plane

Heartbeat

Host B
(IEC 61850)

1

33
4

2

5

Host A sends new
packet to Host B

Switch checks its
flowtable and queries the

primary for actions

Both controllers
process the request

1 2 3

Secondary recognizes
Primary down

Secondary controller replies

4
Switches transport the

packet to its destination

5

Heartbeat
messages

OFPacketIn
OFFlowMod

IEC 61850
packet

Figure 4: Evaluation Testing Setup and Scenario

V. EVALUATION RESULTS

0

10

20

30

40

50

1 2 5
Heartbeat ITT [ms]

E
nd

−t
o−

E
nd

 R
ec

ov
er

y
[m

s] Detect Multiplier: 2x
Detect Multiplier: 5x

IEC 61850 Smart Grid
requirements [19]

Carrier grade requirement [22]

Figure 5: End-to-End Recovery for Various Heartbeat ITT

Figure 5 depicts the end-to-end recovery observed for heart-
beats with an ITT of 1, 2 and 5ms. As new flows enter the DP
in 10ms intervals, high controller load causes perceivable jitter
of heartbeat messages and thus false positives. Hence, detect
multipliers of two and five are used, respectively. Median
recovery delays range from 18 to 22ms, with an ITT of 1ms
(i.e. 5ms timeout) being the fastest and 2ms the slowest.
While having the same detection timeout of 10ms, heartbeats
with 5ms ITT are faster in this case than those with 2ms as
controller load is reduced by having to handle 2.5 times fewer
messages. This observation applies also to 1ms ITT, which
loses most of its theoretical advantage in recovery delay to
computational overhead. Also, garbage collection of the Java
programming language, as used by our controllers, randomly
adds delay spikes. In all cases end-to-end recovery delays stay
below carrier grade requirements [22] with 28ms maximum.
Demands of IEC 61850 are met in the median, respectively
with low outliers, at 1ms heartbeat ITT.
The composition of the observed end-to-end recovery delays

for 1ms ITT are shown by Figure 6. Calculating the path for
a new traffic flow takes about 3ms, with few ∼7ms peaks.
Failure detection is achieved in a mean of 9ms, with few
instances down to ∼4ms and up to 23ms. Transitioning from
failed to redundant controller requires a mean of 10ms, with
a minimum of ∼4ms and maximal ∼15ms. Total end-to-end
recovery delay depends on the failure’s timing, influencing

0

10

20

30

40

50

Calculation Failure
Detection

Secondary/Primary
Transition

End−to−End
Recovery

D
el

ay
 [m

s]

Carrier grade requirement [22]

IEC 61850 Smart Grid
requirements [19]

Figure 6: Recovery Delay Composition for 1ms Heartbeats

Timing-
Dependent

Delta

Time t
[ms]

τ + 10 τ + 20

End-to-End Recovery [ms]

Primary
Controller

Failure

Calculation Delay

Median 3 ms
ITT = 10 ms

Primary/Secondary
Failover Delay
Median 10 msMedian 10 ms

Heartbeat Timeout
Recognition Delay

τ

Figure 7: End-to-End Recovery Delay Sequence

which of the tasks running in parallel finishes last. Figure 7
illustrates this. If the primary fails directly after receiving an
OFPacketIn, detection occurs ∼1ms after calculation, recov-
ering another 4ms later, i.e. ∼8ms after failure at the fastest.
Recovery takes longer, should the primary fail shortly ahead
of sending its reply. With the fastest outliers for detection
and transition (∼4ms) the secondary is ready 1ms after the
next OFPacketIn. For recovery to complete, this also has to
be processed, adding 2ms of remaining calculation. Hence,
recovery beginning from the original DP request takes ∼13ms.
Results are put into context of related work by Figure 8. As
can be seen, the achieved SDN DP recovery delay improves
upon the current state of the art, with only [15] reaching below
50ms (but not including failure detection).

VI. CONCLUSION AND OUTLOOK

In this work a heartbeat based approach to SDN controller
failover is refined and evaluated against the requirements of
CI communications. Network states are continuously syn-
chronized across two redundant controllers, with concurrent
failure detection and control decision calculation. Thus failure
recovery delays are reduced, as correct solutions are already
prepared and only need to be sent to the DP. While, e.g. due to
inefficiencies of the Java programming language, the strictest
class of 10ms end-to-end delays imposed by the SG protocol
IEC 61850 are not always met, areas for optimization are
identified. Carrier grade requirements are fulfilled, facilitating
the solution’s deployment in cloud infrastructures. Future work
will focus on scaling the approach to larger scenarios and
further performance improvements. Additionally, the impact
of deploying the robust controllers as cloud VNFs will be
analyzed and a comparison with the concept of [8] is targeted.

ACKNOWLEDGEMENT

This work has been carried out in the course of research unit 1511
’Protection and control systems for reliable and secure operations
of electrical transmission systems’, funded by the German Research
Foundation (DFG) and the Franco-German Project BERCOM (FKZ:
13N13741) co-funded by the German Federal Ministry of Education
and Research (BMBF).

REFERENCES
[1] OpenFlow Switch Specification Version 1.5.1, Open Networking

Foundation, 2015. [Online]. Available: https://www.opennetworking.
org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[2] N. van Adrichem, B. Van Asten and F. Kuipers, ‘Fast Recovery
in Software-Defined Networks’, in European Workshop on Software
Defined Networks (EWSDN), Sep. 2014, pp. 61–66.

10
20
50

100

1000

4000

Primary / Secondary
(External Database)

SDN Controller Resiliency Strategy

E
nd

-to
-E

nd
R

ec
ov

er
y

D
el

ay
 [m

s]

Primary / Secondary
(Internal Database)

IEC 61850 Smart Grid
requirements [19]

End-to-End Recovery
Delay of this Work

Carrier grade
requirement [22]

[10]
[9] [14]

[17]
[16]

[18]
Excluding Failure
Detection Delay

 0

[15]

Figure 8: Results in Comparison to Related Works

[3] A. Aydeger et al., ‘Software Defined Networking for Resilient Com-
munications in Smart Grid Active Distribution Networks’, in IEEE In-
ternational Conference on Communications (ICC), May 2016, pp. 1–6.

[4] N. Dorsch, F. Kurtz, F. Girke and C. Wietfeld, ‘Enhanced Fast Failover
for Software-Defined Smart Grid Communication Networks’, in IEEE
Global Comm. Conf. (GLOBECOM), Dec. 2016, pp. 1–6.

[5] F. Botelho et al., ‘Design and Implementation of a Consistent Data
Store for a Distributed SDN Control Plane’, in European Dependable
Computing Conference (EDCC), Sep. 2016, pp. 169–180.

[6] K. ElDefrawy and T. Kaczmarek, ‘Byzantine Fault Tolerant Software-
Defined Networking (SDN) Controllers’, in IEEE Computer Software
and Applications Conf. (COMPSAC), vol. 2, Jun. 2016, pp. 208–213.

[7] H. Li, P. Li, S. Guo and S. Yu, ‘Byzantine-Resilient Secure Software-
Defined Networks with Multiple Controllers’, in IEEE International
Conference on Communications (ICC), Jun. 2014, pp. 695–700.

[8] F. Kurtz and C. Wietfeld, ‘Advanced controller resiliency in software-
defined networking enabled critical infrastructure communications’, in
International Conference on Information and Communication Techno-
logy Convergence (ICTC), Oct. 2017, pp. 673–678.

[9] M. A. S. Santos et al., ‘Decentralizing SDN’s Control Plane’, in IEEE
Conference on Local Computer Networks, Sep. 2014, pp. 402–405.

[10] K. C. Fang, K. Wang and J. H. Wang, ‘A Fast and Load-Aware
Controller Failover Mechanism for Software-Defined Networks’, in
International Symposium on Communication Systems, Networks and
Digital Signal Processing (CSNDSP), Jul. 2016, pp. 1–6.

[11] Common Address Redundancy Protocol, [Online]. Available: https://
marc.info/?l=openbsd-misc&m=106642790513590, OpenBSD, 2003.

[12] S. Nadas, ‘Virtual Router Redundancy Protocol Version 3 for IPv4 and
IPv6’, Internet Engineering Task Force, RFC 5798, Mar. 2010.

[13] Openstack, OpenStack Foundation, 2018. [Online]. Available: https :
//www.openstack.org/.

[14] L. Sidki, Y. Ben-Shimol and A. Sadovski, ‘Fault Tolerant Mechanisms
for SDN Controllers’, in IEEE Conference on Network Function Vir-
tualization and Software Defined Networks, Nov. 2016, pp. 173–178.

[15] S. Yoon et al., ‘Fast Controller Switching for Fault-Tolerant Cyber-
Physical Systems on Software-Defined Networks’, in IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC), Jan.
2017, pp. 211–212.

[16] Y.-C. Chan, K. Wang and Y.-H. Hsu, ‘Fast Controller Failover for
Multi-domain Software-Defined Networks’, in European Conference
on Networks and Com. (EuCNC), Jun. 2015, pp. 370–374.

[17] D. Suh et al., ‘Toward Highly Available and Scalable Software Defined
Networks for Service Providers’, IEEE Communications Magazine,
vol. 55, no. 4, pp. 100–107, Apr. 2017.

[18] V. Pashkov, A. Shalimov and R. Smeliansky, ‘Controller Failover for
SDN Enterprise Networks’, in International Science and Technology
Conf. (Modern Networking Technologies), Oct. 2014, pp. 1–6.

[19] IEC 61850: Communication Networks and Systems for Power Utility
Automation, International Electrotechnical Commission TC57.

[20] Floodlight Controller Version 1.0, Project Floodlight, 2015. [Online].
Available: http://www.projectfloodlight.org/floodlight/.

[21] IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems 1588–2002, The Institute
of Electrical and Electronics Engineers, Inc.

[22] B. Niven-Jenkins et al., ‘Requirements of an MPLS Transport Profile
(RFC 5654)’, Tech. Rep., Sep. 2009.

